[Research advances in histone modification-regulated plant stress memory and defense priming]
- PMID: 35524540
- DOI: 10.13287/j.1001-9332.202202.039
[Research advances in histone modification-regulated plant stress memory and defense priming]
Abstract
Plants, grown in the immobile soils, have evolved various strategies in response to environmental stresses, including the "stress memory" and "defense priming" mechanisms. The environmental stresses cannot immediately change the DNA base sequence in plants in the short-term. Therefore, epigenetic inheritance is a key mechanism for stress memory and defense priming. In particular, histone modification is considered to be the most important mechanism, which offers the possibility of stress memory. We summarized research advances in plant histone modifications involved in stress memory and defense priming under biotic and abiotic stresses, and proposed pro-blems in the field and the focus and directions in the future research. In-depth understanding of the relationship between histone modification and environmental stresses would facilitate the quick adaptation of plants to harsh environments, and provide theoretical and technical guidance for plant phenotype shaping, organ regeneration, and crop genetic improvement.
植物扎根土壤,面对不利的环境胁迫无法逃避。然而,植物已经进化出对环境胁迫的记忆(stress memory)与警备抗性(或防御警备defense priming)等机制适应环境。环境胁迫在短时间内无法改变植物的DNA碱基序列,因此表观遗传被认为是植物对环境胁迫产生记忆和产生防御警备的主要机制,而组蛋白修饰被认为是最重要的机制,为胁迫记忆提供了可能。本文综述了非生物和生物胁迫下植物分别以胁迫记忆和防御警备机制为主导的组蛋白修饰参与抵御不良环境的最新进展,并提出该研究领域存在的问题和今后研究的重点与方向。深入探究组蛋白修饰与植物适应环境胁迫的关系,可为提高植物抗性、植物表型塑造、器官再生和作物改良等方面提供理论和技术指导。.
Keywords: abiotic stress; biotic stress; defense priming; histone modification; stress memory.