Intron-dependent evolution: preferred types of exons and introns
- PMID: 3552723
- DOI: 10.1016/0014-5793(87)80002-9
Intron-dependent evolution: preferred types of exons and introns
Abstract
Exon insertions and exon duplications, two major mechanisms of exon shuffling, are shown to involve modules that have introns of the same phase class at both their 5'- and 3'-ends. At the sites of intronic recombinations exon insertions and duplications create new introns which belong to the same phase class as the recipient introns. As a consequence of repeated exon insertions and exon duplications introns of a single phase class predominate in the resulting genes, i.e. gene assembly by exon shuffling is reflected both by this nonrandom intron phase usage and by the correlation between the domain organization of the proteins and exon-intron organization of their genes. Genes that appeared before the eukaryote-prokaryote split do not show these diagnostic signs of exon shuffling. Since ancestral introns (e.g. self-splicing introns) did not favour intronic recombination, exon shuffling may not have been significant in the early part of protein evolution.
Similar articles
-
Exon shuffling by recombination between self-splicing introns of bacteriophage T4.Nature. 1989 Aug 17;340(6234):575-6. doi: 10.1038/340574a0. Nature. 1989. PMID: 2770862
-
Intron phase correlations and the evolution of the intron/exon structure of genes.Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12495-9. doi: 10.1073/pnas.92.26.12495. Proc Natl Acad Sci U S A. 1995. PMID: 8618928 Free PMC article.
-
Evolution of the intron-exon structure of eukaryotic genes.Curr Opin Genet Dev. 1995 Dec;5(6):774-8. doi: 10.1016/0959-437x(95)80010-3. Curr Opin Genet Dev. 1995. PMID: 8745076 Review.
-
The role of introns in evolution.FEBS Lett. 1990 Aug 1;268(2):339-43. doi: 10.1016/0014-5793(90)81282-s. FEBS Lett. 1990. PMID: 2200714 Review.
-
Evolution of the EF-hand calcium-binding protein family: evidence for exon shuffling and intron insertion.J Mol Evol. 1988;27(4):351-64. doi: 10.1007/BF02101198. J Mol Evol. 1988. PMID: 3146646
Cited by
-
Association of the leukocyte plasma membrane with the actin cytoskeleton through coiled coil-mediated trimeric coronin 1 molecules.Mol Biol Cell. 2005 Jun;16(6):2786-98. doi: 10.1091/mbc.e05-01-0042. Epub 2005 Mar 30. Mol Biol Cell. 2005. PMID: 15800061 Free PMC article.
-
Gene structure and molecular phylogeny of the linker chains from the giant annelid hexagonal bilayer hemoglobins.J Mol Evol. 2006 Sep;63(3):365-74. doi: 10.1007/s00239-005-0198-9. Epub 2006 Jul 12. J Mol Evol. 2006. PMID: 16838215
-
The role of exon shuffling in shaping protein-protein interaction networks.BMC Genomics. 2010 Dec 22;11 Suppl 5(Suppl 5):S11. doi: 10.1186/1471-2164-11-S5-S11. BMC Genomics. 2010. PMID: 21210967 Free PMC article.
-
Characterization of murine mannose-binding protein genes Mbl1 and Mbl2 reveals features common to other collectin genes.Mamm Genome. 1995 Feb;6(2):103-10. doi: 10.1007/BF00303252. Mamm Genome. 1995. PMID: 7766991
-
Contrasting Patterns in the Evolution of Vertebrate MLX Interacting Protein (MLXIP) and MLX Interacting Protein-Like (MLXIPL) Genes.PLoS One. 2016 Feb 24;11(2):e0149682. doi: 10.1371/journal.pone.0149682. eCollection 2016. PLoS One. 2016. PMID: 26910886 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials