On the dynamics of point vortices for the two-dimensional Euler equation with Lp vorticity
- PMID: 35527636
- DOI: 10.1098/rsta.2021.0046
On the dynamics of point vortices for the two-dimensional Euler equation with Lp vorticity
Abstract
We study the evolution of solutions to the two-dimensional Euler equations whose vorticity is sharply concentrated in the Wasserstein sense around a finite number of points. Under the assumption that the vorticity is merely [Formula: see text] integrable for some [Formula: see text], we show that the evolving vortex regions remain concentrated around points, and these points are close to solutions to the Helmholtz-Kirchhoff point vortex system. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.
Keywords: Euler equations; stability estimates; vortex dynamics.
Similar articles
-
Equations of motion for weakly compressible point vortices.Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210052. doi: 10.1098/rsta.2021.0052. Epub 2022 May 9. Philos Trans A Math Phys Eng Sci. 2022. PMID: 35527628 Free PMC article.
-
Perturbational blowup solutions to the compressible Euler equations with damping.Springerplus. 2016 Feb 27;5:196. doi: 10.1186/s40064-016-1766-8. eCollection 2016. Springerplus. 2016. PMID: 27026892 Free PMC article.
-
On the role of continuous symmetries in the solution of the three-dimensional Euler fluid equations and related models.Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210050. doi: 10.1098/rsta.2021.0050. Epub 2022 May 9. Philos Trans A Math Phys Eng Sci. 2022. PMID: 35527639 Free PMC article.
-
Vortex merger and topological changes in two-dimensional turbulence.Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 2):016309. doi: 10.1103/PhysRevE.86.016309. Epub 2012 Jul 10. Phys Rev E Stat Nonlin Soft Matter Phys. 2012. PMID: 23005527
-
Open problems, questions and challenges in finite- dimensional integrable systems.Philos Trans A Math Phys Eng Sci. 2018 Sep 17;376(2131):20170430. doi: 10.1098/rsta.2017.0430. Philos Trans A Math Phys Eng Sci. 2018. PMID: 30224421 Free PMC article. Review.
Cited by
-
Editorial: Mathematical problems in physical fluid dynamics: part II.Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210057. doi: 10.1098/rsta.2021.0057. Epub 2022 May 9. Philos Trans A Math Phys Eng Sci. 2022. PMID: 35527635 Free PMC article.
LinkOut - more resources
Full Text Sources