On the role of continuous symmetries in the solution of the three-dimensional Euler fluid equations and related models
- PMID: 35527639
- PMCID: PMC9081819
- DOI: 10.1098/rsta.2021.0050
On the role of continuous symmetries in the solution of the three-dimensional Euler fluid equations and related models
Abstract
We review and apply the continuous symmetry approach to find the solution of the three-dimensional Euler fluid equations in several instances of interest, via the construction of constants of motion and infinitesimal symmetries, without recourse to Noether's theorem. We show that the vorticity field is a symmetry of the flow, so if the flow admits another symmetry then a Lie algebra of new symmetries can be constructed. For steady Euler flows this leads directly to the distinction of (non-)Beltrami flows: an example is given where the topology of the spatial manifold determines whether extra symmetries can be constructed. Next, we study the stagnation-point-type exact solution of the three-dimensional Euler fluid equations introduced by Gibbon et al. (Gibbon et al. 1999 Physica D 132, 497-510. (doi:10.1016/S0167-2789(99)00067-6)) along with a one-parameter generalization of it introduced by Mulungye et al. (Mulungye et al. 2015 J. Fluid Mech. 771, 468-502. (doi:10.1017/jfm.2015.194)). Applying the symmetry approach to these models allows for the explicit integration of the fields along pathlines, revealing a fine structure of blowup for the vorticity, its stretching rate and the back-to-labels map, depending on the value of the free parameter and on the initial conditions. Finally, we produce explicit blowup exponents and prefactors for a generic type of initial conditions. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.
Keywords: exact solutions; finite-time singularities; infinitesimal symmetries; lie algebras; three-dimensional Euler fluid equations.
Conflict of interest statement
We declare we have no competing interests.
Similar articles
-
Perturbational blowup solutions to the compressible Euler equations with damping.Springerplus. 2016 Feb 27;5:196. doi: 10.1186/s40064-016-1766-8. eCollection 2016. Springerplus. 2016. PMID: 27026892 Free PMC article.
-
Noether's theorem and Lie symmetries for time-dependent Hamilton-Lagrange systems.Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Dec;66(6 Pt 2):066605. doi: 10.1103/PhysRevE.66.066605. Epub 2002 Dec 12. Phys Rev E Stat Nonlin Soft Matter Phys. 2002. PMID: 12513427
-
Conserved quantities of Euler-Lagrange system via complex Lagrangian.Heliyon. 2023 Jun 9;9(6):e17059. doi: 10.1016/j.heliyon.2023.e17059. eCollection 2023 Jun. Heliyon. 2023. PMID: 37484295 Free PMC article.
-
Spacelike Singularities and Hidden Symmetries of Gravity.Living Rev Relativ. 2008;11(1):1. doi: 10.12942/lrr-2008-1. Epub 2008 Apr 24. Living Rev Relativ. 2008. PMID: 28179821 Free PMC article. Review.
-
Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography.Philos Trans A Math Phys Eng Sci. 2018 Jan 28;376(2111):20170092. doi: 10.1098/rsta.2017.0092. Philos Trans A Math Phys Eng Sci. 2018. PMID: 29229792 Review.
Cited by
-
Editorial: Mathematical problems in physical fluid dynamics: part II.Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210057. doi: 10.1098/rsta.2021.0057. Epub 2022 May 9. Philos Trans A Math Phys Eng Sci. 2022. PMID: 35527635 Free PMC article.
References
-
- Gibbon J, Fokas A, Doering C. 1999. Dynamically stretched vortices as solutions of the 3D Navier-Stokes equations. Physica D 132, 497-510. (10.1016/S0167-2789(99)00067-6) - DOI
-
- Mulungye RM, Lucas D, Bustamante MD. 2015. Symmetry-plane model of 3D Euler flows and mapping to regular systems to improve blowup assessment using numerical and analytical solutions. J. Fluid Mech. 771, 468-502. (10.1017/jfm.2015.194) - DOI
-
- Lie S. 1891. Vorlesungen über differentialgleichungen: mit bekannten infinitesimalen transformationen. Leipzig, Germany: BG Teubner.
-
- Santilli R. 1982. Foundations of theoretical mechanics II. Birkhoffian generalization of Hamiltonian mechanics. New York, NY: Springer-Verlag.
-
- Hojman S, Zertuche F. 1985. S-equivalence and symmetries of first-order differential systems. Il Nuovo Cimento B (1971-1996) 88, 1-8. (10.1007/BF02729024) - DOI
LinkOut - more resources
Full Text Sources