Phosphotungstic acid as a novel acidic catalyst for carbohydrate protection and glycosylation
- PMID: 35528919
- PMCID: PMC9073715
- DOI: 10.1039/c9ra06170c
Phosphotungstic acid as a novel acidic catalyst for carbohydrate protection and glycosylation
Abstract
This work demonstrates the utilization of phosphotungstic acid (PTA) as a novel acidic catalyst for carbohydrate reactions, such as per-O-acetylation, regioselective O-4,6 benzylidene acetal formation, regioselective O-4 ring-opening, and glycosylation. These reactions are basic and salient during the synthesis of carbohydrate-based bioactive oligomers. Phosphotungstic acid's high acidity and eco-friendly character make it a tempting alternative to corrosive homogeneous acids. The various homogenous acid catalysts were replaced by the phosphotungstic acid solely for different carbohydrate reactions. It can be widely used as a catalyst for organic reactions as it is thermally stable and easy to handle. In our work, the reactions are operated smoothly under ambient conditions; the temperature varies from 0 °C to room temperature. Good to excellent yields were obtained in all four kinds of reactions.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures
References
-
- Pifferi C. Daskhan G. C. Fiore M. Shiao T. C. Roy R. Renaudet O. Chem. Rev. 2017;117:9839. doi: 10.1021/acs.chemrev.6b00733. - DOI - PubMed
- Wood R. J. Chem. Rev. 2018;118:8005. doi: 10.1021/acs.chemrev.8b00032. - DOI - PMC - PubMed
- Giannis A. Angew. Chem., Int. Ed. 1994;33:178. doi: 10.1002/anie.199401781. - DOI
- Varki A. Glycobiology. 1993;3:97. doi: 10.1093/glycob/3.2.97. - DOI - PMC - PubMed
- Yua C. C. Withers S. G. Adv. Synth. Catal. 2015;357:1633. doi: 10.1002/adsc.201500349. - DOI
-
- Sears P. Wong C. H. Science. 2001;291:2344. doi: 10.1126/science.1058899. - DOI - PubMed
- Kilcoyne M. Joshi L. Cardiovasc. Hematol. Agents Med. Chem. 2007;5:186. doi: 10.2174/187152507781058663. - DOI - PubMed
- Chen Y. Heeg M. J. Braunschweiger P. G. Xie W. Wang P. G. Angew. Chem., Int. Ed. 1999;38:1768. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1768::AID-ANIE1768>3.0.CO;2-6. - DOI - PubMed
- Galan M. C. Benito-Alifonso D. Watt G. M. Org. Biomol. Chem. 2011;9:3598. doi: 10.1039/C0OB01017K. - DOI - PubMed
- Borges de Melo E. da Silveira Gomes A. Carvalho I. Tetrahedron. 2006;62:10277. doi: 10.1016/j.tet.2006.08.055. - DOI
-
- Nicolaou K. C. Helen J. M. Angew. Chem., Int. Ed. 2001;40:1576. doi: 10.1002/1521-3773(20010504)40:9<1576::AID-ANIE15760>3.0.CO;2-G. - DOI - PubMed
- Damiano C. Luigi L. Synlett. 2014;25:2873. doi: 10.1055/s-0034-1379471. - DOI
- Petitou M. Duchaussoy P. Driguez P. A. Jaurand G. Herault J. P. Lormeau J. C. van Boeckel C. A. A. Herbert J. M. Angew. Chem., Int. Ed. 1998;37:3009. doi: 10.1002/(SICI)1521-3773(19981116)37:21<3009::AID-ANIE3009>3.0.CO;2-F. - DOI - PubMed
- Dureau R. Legentil L. Daniellou R. Ferrières V. J. Org. Chem. 2012;77:1301. doi: 10.1021/jo201913f. - DOI - PubMed
-
- Geyer H. Geyer R. Biochim. Biophys. Acta, Proteins Proteomics. 2006;1764:1853. doi: 10.1016/j.bbapap.2006.10.007. - DOI - PubMed
- Kulkarni S. S. Wang C. C. Sabbavarapu N. M. Podilapu A. R. Liao P. H. Hung S. C. Chem. Rev. 2018;118:8025. doi: 10.1021/acs.chemrev.8b00036. - DOI - PubMed
- Plettenburg O. Mui C. Vera B. N. Wonga C. H. Adv. Synth. Catal. 2002;344:622. doi: 10.1002/1615-4169(200208)344:6/7<622::AID-ADSC622>3.0.CO;2-W. - DOI
LinkOut - more resources
Full Text Sources