Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Sep 3;9(47):27625-27639.
doi: 10.1039/c9ra04170b. eCollection 2019 Aug 29.

Recent advances in direct trifluoromethylation of olefinic C-H bonds

Affiliations
Review

Recent advances in direct trifluoromethylation of olefinic C-H bonds

Cao Yang et al. RSC Adv. .

Abstract

The aim of this review is to provide a comprehensive overview of the direct trifluoromethylation of olefinic C-H bonds with special attention on the mechanistic aspects of the reactions. The review is divided into two major sections. The first focuses exclusively on trifluoromethylation of terminal alkenes, while the second will cover trifluoromethylation of internal alkenes. Literature has been surveyed until the end of April 2019.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Direct trifluoromethylation of olefinic C–H bonds.
Scheme 2
Scheme 2. Cu-catalyzed trifluoromethylation of styrenes 1 using Togni's reagent.
Scheme 3
Scheme 3. Direct trifluoromethylation of enamides 4 with Togni's regent.
Scheme 4
Scheme 4. Mechanism for the trifluoromethylation of enamides 4.
Scheme 5
Scheme 5. Cu(i)-catalyzed trifluoromethylation of acrylamide derivatives 6 with Togni's regent 2.
Scheme 6
Scheme 6. (a) Xiao's synthesis of β-trifluoromethylated styrenes 10; (b) direct trifluoromethylation of diarylethenes 11 with the Langlois reagent.
Scheme 7
Scheme 7. Mechanistic proposal for the reaction in Scheme 6a.
Scheme 8
Scheme 8. Visible light-mediated direct trifluoromethylation of terminal alkenes 13 developed by Cho.
Scheme 9
Scheme 9. Akita's synthesis of trifluoromethylated alkenes 17.
Scheme 10
Scheme 10. Mechanism that accounts for the formation of trifluoromethylated alkenes 17.
Scheme 11
Scheme 11. Chemo-, regio-, and stereoselective trifluoromethylation of styrenes 18 developed by Qing.
Scheme 12
Scheme 12. Photocatalytic trifluoromethylation of terminal alkenes 21 with CF3I.
Scheme 13
Scheme 13. Photoredox-catalyzed (Z)-diastereoselective trifluoromethylation of methylene exo-glycals 23 using the Umemoto's reagent.
Scheme 14
Scheme 14. Iodide-induced direct C–H trifluoromethylation of α,β-unsaturated carbonyl compounds 25 with Togni's reagent.
Scheme 15
Scheme 15. Mechanism proposed to explain the formation of (E)-β-trifluoromethyl α,β-unsaturated hydroxamic acids 26.
Scheme 16
Scheme 16. Yu's trifluoromethylation of enamides 27.
Scheme 17
Scheme 17. NIS-promoted trifluoromethylation of unactivated alkenes 29 with Me3SiCF3.
Scheme 18
Scheme 18. Mechanism that accounts for the formation of trifluoromethylated (E)-alkenes 30.
Scheme 19
Scheme 19. (a) Cu-catalyzed trifluoromethylation of (benzo)quinones 31 with Togni's reagent; (b) Wang's synthesis of CF3-substituted quinones 34.
Scheme 20
Scheme 20. Fe-catalyzed regioselective trifluoromethylation of cyclic enamides 35.
Scheme 21
Scheme 21. Photoredox-catalyzed direct trifluoromethylation of glycals 37 with Umemoto's reagent.
Scheme 22
Scheme 22. Metal-free direct trifluoromethylation of cyclic alkenes 39 developed by Georg.
Scheme 23
Scheme 23. Cu-catalyzed trifluoromethylation of internal olefinic C–H bonds by using TMSCF3.
Scheme 24
Scheme 24. Regioselective C–H α-trifluoromethylation of α,β-unsaturated carbonyl compounds 43 using CuI as catalyst.
Scheme 25
Scheme 25. Copper-catalyzed α-selective C–H trifluoromethylation of acrylamides 45 with TMSCF3.
Scheme 26
Scheme 26. Plausible mechanism for reaction in Scheme 25.
Scheme 27
Scheme 27. Metal-free direct C–H trifluoromethylation of ketene dithioacetals 47 with TMSCF3.
Scheme 28
Scheme 28. The possible radical reaction mechanism for trifluoromethylation of ketene dithioacetals 47.
Scheme 29
Scheme 29. Synthesis of β-trifluoromethyl substituted enamines 50 by trifluoromethylation of corresponding enamines 49 with Langlois reagent.
None
Akbar Hassanpour
None
Khatereh Ghorbanpour
None
Shahrzad Abdolmohammadi
None
Esmail Vessally

Similar articles

Cited by

References

    1. Wang J. Sánchez-Roselló M. Aceña J. L. del Pozo C. Sorochinsky A. E. Fustero S. Soloshonok V. A. Liu H. Chem. Rev. 2014;114:2432–2506. doi: 10.1021/cr4002879. - DOI - PubMed
    2. Fujiwara T. O'Hagan D. J. Fluorine Chem. 2014;167:16–29. doi: 10.1016/j.jfluchem.2014.06.014. - DOI
    3. Babudri F. Farinola G. M. Naso F. Ragni R. Chem. Commun. 2007:1003–1022. doi: 10.1039/B611336B. - DOI - PubMed
    1. Grushin V. V. Acc. Chem. Res. 2009;43:160–171. doi: 10.1021/ar9001763. - DOI - PubMed
    2. Zhou Y. Wang J. Gu Z. Wang S. Zhu W. Aceña J. L. Soloshonok V. A. Izawa K. Liu H. Chem. Rev. 2016;116:422–518. doi: 10.1021/acs.chemrev.5b00392. - DOI - PubMed
    1. Kirk K. L. Org. Process Res. Dev. 2008;12:305–321. doi: 10.1021/op700134j. - DOI
    1. Zhu W. Wang J. Wang S. Gu Z. Aceña J. L. Izawa K. Liu H. Soloshonok V. A. J. Fluorine Chem. 2014;167:37–54. doi: 10.1016/j.jfluchem.2014.06.026. - DOI
    1. Zhang C. Adv. Synth. Catal. 2014;356:2895–2906. doi: 10.1002/adsc.201400370. - DOI - PMC - PubMed
    2. Wang S.-M. Han J.-B. Zhang C.-P. Qin H.-L. Xiao J.-C. Tetrahedron. 2015;71:7949–7976. doi: 10.1016/j.tet.2015.06.056. - DOI
    3. Lantano B. Torviso M. R. Bonesi S. M. Barata-Vallejo S. Postigo A. Coord. Chem. Rev. 2015;285:76–108. doi: 10.1016/j.ccr.2014.11.004. - DOI
    4. Guyon H. Chachignon H. Cahard D. Beilstein J. Org. Chem. 2017;13:2764–2799. doi: 10.3762/bjoc.13.272. - DOI - PMC - PubMed