Tensile properties of polymer nanowires fabricated via two-photon lithography
- PMID: 35529657
- PMCID: PMC9071184
- DOI: 10.1039/c9ra02350j
Tensile properties of polymer nanowires fabricated via two-photon lithography
Abstract
Two-photon lithography enables fabrication of complex 3D structures with nanoscale features. However, its utility is limited by the lack of knowledge about the process-property relationship. Here, we have designed micro-electro-mechanical systems (MEMS)-based miniaturized tensile testers to measure the stress-strain response of the individual polymer nanowires. Measurements demonstrate that geometrically indistinguishable nanowires can exhibit widely varying material behavior ranging from brittle to soft plastic based on processing conditions. In addition, a distinct size-scaling effect was observed for post-processed nanowires wherein thinner nanowires have up to 2 times higher properties. The process-property characterization presented here will be critical for predictive design of functional 3D structures with nanoscale features.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
The MEMS tester used herein is the subject of a patent application filed at the US Patent and Trademark Office with all coauthors as co-inventors and jointly assigned to Lawrence Livermore National Security, LLC and the University of Texas at Austin.
Figures




Similar articles
-
Size dependent nanomechanics of coil spring shaped polymer nanowires.Sci Rep. 2015 Nov 27;5:17152. doi: 10.1038/srep17152. Sci Rep. 2015. PMID: 26612544 Free PMC article.
-
Parallel Nanoshaping of Brittle Semiconductor Nanowires for Strained Electronics.Nano Lett. 2016 Dec 14;16(12):7536-7544. doi: 10.1021/acs.nanolett.6b03366. Epub 2016 Nov 9. Nano Lett. 2016. PMID: 27960457
-
A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography.Nanoscale. 2018 Nov 15;10(44):20578-20586. doi: 10.1039/c8nr04198a. Nanoscale. 2018. PMID: 30226241
-
Nanoskiving: a new method to produce arrays of nanostructures.Acc Chem Res. 2008 Dec;41(12):1566-77. doi: 10.1021/ar700194y. Acc Chem Res. 2008. PMID: 18646870 Review.
-
A Review on Micro/Nanoforming to Fabricate 3D Metallic Structures.Adv Mater. 2021 Feb;33(6):e2000893. doi: 10.1002/adma.202000893. Epub 2020 Sep 13. Adv Mater. 2021. PMID: 32924211 Review.
Cited by
-
Two-Photon Polymerized Shape Memory Microfibers: A New Mechanical Characterization Method in Liquid.Adv Funct Mater. 2023 Jan 16;33(3):2206739. doi: 10.1002/adfm.202206739. Epub 2022 Sep 22. Adv Funct Mater. 2023. PMID: 36817407 Free PMC article.
-
Towards Two-Photon Polymerization-Compatible Diffractive Optics for Micro-Mechanical Applications.Micromachines (Basel). 2023 Jun 27;14(7):1319. doi: 10.3390/mi14071319. Micromachines (Basel). 2023. PMID: 37512630 Free PMC article.
-
Toward Standardized Microscale Tensile Testing for Two-Photon Polymerization-Fabricated Materials in Liquid.Small Sci. 2025 Jul 22;5(9):2500228. doi: 10.1002/smsc.202500228. eCollection 2025 Sep. Small Sci. 2025. PMID: 40917395 Free PMC article.
-
Printable microscale interfaces for long-term peripheral nerve mapping and precision control.Nat Commun. 2020 Aug 21;11(1):4191. doi: 10.1038/s41467-020-18032-4. Nat Commun. 2020. PMID: 32826892 Free PMC article.
-
Mechanical Control of the Optical Bandgap in One-Dimensional Photonic Crystals.Micromachines (Basel). 2022 Dec 17;13(12):2248. doi: 10.3390/mi13122248. Micromachines (Basel). 2022. PMID: 36557546 Free PMC article.
References
-
- LaFratta C. N. Baldacchini T. Micromachines. 2017;8:101. doi: 10.3390/mi8040101. - DOI
-
- Zhou X. Hou Y. Lin J. AIP Adv. 2015;5:030701. doi: 10.1063/1.4916886. - DOI
-
- Lee K.-S. Kim R. H. Yang D.-Y. Park S. H. Prog. Polym. Sci. 2008;33:631–681. doi: 10.1016/j.progpolymsci.2008.01.001. - DOI
-
- Wu S. Serbin J. Gu M. J. Photochem. Photobiol., A. 2006;181:1–11. doi: 10.1016/j.jphotochem.2006.03.004. - DOI
-
- Sun H.-B. Kawata S. Adv. Polym. Sci. 2004;170:169–274. doi: 10.1007/b94405. - DOI
LinkOut - more resources
Full Text Sources