Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Apr 22:13:828476.
doi: 10.3389/fpsyt.2022.828476. eCollection 2022.

The Influence of Serum Uric Acid on the Brain and Cognitive Dysfunction

Affiliations
Review

The Influence of Serum Uric Acid on the Brain and Cognitive Dysfunction

Natasa R Mijailovic et al. Front Psychiatry. .

Abstract

Uric acid is commonly known for its bad reputation. However, it has been shown that uric acid may be actively involved in neurotoxicity and/or neuroprotection. These effects could be caused by oxidative stress or inflammatory processes localized in the central nervous system, but also by other somatic diseases or systemic conditions. Our interest was to summarize and link the current data on the possible role of uric acid in cognitive functioning. We also focused on the two putative molecular mechanisms related to the pathological effects of uric acid-oxidative stress and inflammatory processes. The hippocampus is a prominent anatomic localization included in expressing uric acid's potential impact on cognitive functioning. In neurodegenerative and mental disorders, uric acid could be involved in a variety of ways in etiopathogenesis and clinical presentation. Hyperuricemia is non-specifically observed more frequently in the general population and after various somatic illnesses. There is increasing evidence to support the hypothesis that hyperuricemia may be beneficial for cognitive functioning because of its antioxidant effects but may also be a potential risk factor for cognitive dysfunction, in part because of increased inflammatory activity. In this context, gender specificities must also be considered.

Keywords: cognition; inflammation; neuroprotection; neurotoxicity; oxidative stress; uric acid.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
The role of uric acid in oxidative stress and neuroinflammation. The dual nature of uric acid in terms of oxidative and inflammatory processes in brain tissue. ONOO, peroxynitrite; NO, nitric oxide; SOD, superoxide dismutase; DNA, deoxyibonucleic acid; oxidative (A,B) and inflammatory processes. (C,D) in brain tissue. ATP, adenosine 5'-triphosphate; NLRP3, nucleotide-binding and oligomerization domain-like receptor protein 3; TLR4, Toll-like receptor 4; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; IL, interleukin; TNF-α, tumor necrosis factor-alpha; CRP, C-reactive protein; STAT 3, signal transducer and activator of transcription 3; BBB, blood-brain barrier.
Figure 2
Figure 2
Potential mechanisms involved in uric acid-related cognitive dysfunction. The summary of the main pathological mechanisms of uric acid, such as oxidative stress and neuroinflammation, along with endothelial dysfunction and excitotoxicity, which may collectively affect neuronal and brain function and further implicate uric acid-related cognitive decline.

Similar articles

Cited by

References

    1. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. Int J Cardiol. (2016) 213:8–14. 10.1016/j.ijcard.2015.08.109 - DOI - PubMed
    1. El Ridi R, Tallima H. Physiological functions and pathogenic potential of uric acid: a review. J Adv Res. (2017) 8:487–93. 10.1016/j.jare.2017.03.003 - DOI - PMC - PubMed
    1. Oda M, Satta Y, Takenaka O, Takahata N. Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Biol Evol. (2002) 19:640–53. 10.1093/oxfordjournals.molbev.a004123 - DOI - PubMed
    1. Kellogg EW, Fridovich I. Liposome oxidation and erythrocyte lysis by enzymically generated superoxide and hydrogen peroxide. J Biol Chem. (1977) 252:6721–8. 10.1016/S0021-9258(17)39909-X - DOI - PubMed
    1. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. (1981) 78:6858–62. 10.1073/pnas.78.11.6858 - DOI - PMC - PubMed