Concurrent TMS-fMRI: Technical Challenges, Developments, and Overview of Previous Studies
- PMID: 35530029
- PMCID: PMC9069063
- DOI: 10.3389/fpsyt.2022.825205
Concurrent TMS-fMRI: Technical Challenges, Developments, and Overview of Previous Studies
Abstract
Transcranial magnetic stimulation (TMS) is a promising treatment modality for psychiatric and neurological disorders. Repetitive TMS (rTMS) is widely used for the treatment of psychiatric and neurological diseases, such as depression, motor stroke, and neuropathic pain. However, the underlying mechanisms of rTMS-mediated neuronal modulation are not fully understood. In this respect, concurrent or simultaneous TMS-fMRI, in which TMS is applied during functional magnetic resonance imaging (fMRI), is a viable tool to gain insights, as it enables an investigation of the immediate effects of TMS. Concurrent application of TMS during neuroimaging usually causes severe artifacts due to magnetic field inhomogeneities induced by TMS. However, by carefully interleaving the TMS pulses with MR signal acquisition in the way that these are far enough apart, we can avoid any image distortions. While the very first feasibility studies date back to the 1990s, recent developments in coil hardware and acquisition techniques have boosted the number of TMS-fMRI applications. As such, a concurrent application requires expertise in both TMS and MRI mechanisms and sequencing, and the hurdle of initial technical set up and maintenance remains high. This review gives a comprehensive overview of concurrent TMS-fMRI techniques by collecting (1) basic information, (2) technical challenges and developments, (3) an overview of findings reported so far using concurrent TMS-fMRI, and (4) current limitations and our suggestions for improvement. By sharing this review, we hope to attract the interest of researchers from various backgrounds and create an educational knowledge base.
Keywords: concurrent TMS-fMRI; functional MRI (fMRI); interleaved TMS-fMRI; review; transcranial magnetic stimulation (TMS).
Copyright © 2022 Mizutani-Tiebel, Tik, Chang, Padberg, Soldini, Wilkinson, Voon, Bulubas, Windischberger and Keeser.
Conflict of interest statement
FP was a member of the European Scientific Advisory Board of Brainsway Inc., Jerusalem, Israel and has received speaker's honoraria from MagandMore GmbH and the neuroCare Group. His lab has received support with equipment from neuroConn GmbH, Ilmenau, Germany, MagandMore GmbH, and Brainsway Inc., Jerusalem, Israel. YM-T was a half-time employee of neuroCare Group and this work is a part of her Ph.D. program at Munich Medical Research School. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures
References
-
- Blumberger DM, Vila-Rodriguez F, Thorpe KE, Feffer K, Noda Y, Giacobbe P, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet. (2018) 391:1683–92. 10.1016/S0140-6736(18)30295-2 - DOI - PubMed
-
- O'Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. (2007) 62:1208–16. 10.1016/j.biopsych.2007.01.018 - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Research Materials
