Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 14;9(44):25377-25381.
doi: 10.1039/c9ra04836g. eCollection 2019 Aug 13.

Chiral benzene backbone-based sulfoxide-olefin ligands for highly enantioselective Rh-catalyzed addition of arylboronic acids to N-tosylarylimines

Affiliations

Chiral benzene backbone-based sulfoxide-olefin ligands for highly enantioselective Rh-catalyzed addition of arylboronic acids to N-tosylarylimines

Feng Xue et al. RSC Adv. .

Abstract

An efficient Rh-catalyzed addition of arylboronic acids to N-tosylarylimines has been developed with chiral benzene backbone-based sulfoxide-olefin ligands, where 2-methoxy-1-naphthyl sulfinyl functionalized olefin ligands have shown to be more effective. The versatile method tolerates a wide range of functional groups and shows broad scope without regard to electronic or steric substitution pattern, allowing access to a broad range of chiral diarylmethylamines in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee).

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Rh-catalyzed asymmetric arylation of N-tosylarylimines.
Fig. 1
Fig. 1. Proposed stereochemical pathway for the asymmetric arylation.

Similar articles

Cited by

References

    1. For representative examples, see:

    2. Spencer C. M. Foulds D. Peters D. H. Drugs. 1993;46:1055. doi: 10.2165/00003495-199346060-00008. - DOI - PubMed
    3. Calderon S. N. Rothman R. B. Porreca F. Flippen-Anderson J. L. McNutt R. W. Xu H. Smith L. E. Bilsky E. J. Davis P. Rice K. C. J. Med. Chem. 1994;37:2125. doi: 10.1021/jm00040a002. - DOI - PubMed
    4. Bishop M. J. McNutt R. W. Bioorg. Med. Chem. Lett. 1995;5:1311. doi: 10.1016/0960-894X(95)00213-D. - DOI
    5. Sakurai S. Ogawa N. Suzuki T. Kato K. Ohashi T. Yasuda S. Kato H. Ito Y. Chem. Pharm. Bull. 1996;44:765. doi: 10.1248/cpb.44.765. - DOI - PubMed
    1. For representative examples, see:

    2. Kobayashi S. Ishitani H. Chem. Rev. 1999;99:1069. doi: 10.1021/cr980414z. - DOI - PubMed
    3. Bolm C. Hildebrand J. P. Muñiz K. Hermanns N. Angew. Chem., Int. Ed. 2001;40:3284. doi: 10.1002/1521-3773(20010917)40:18<3284::AID-ANIE3284>3.0.CO;2-U. - DOI - PubMed
    4. Schmidt F. Stemmler R. T. Rudolph J. Bolm C. Chem. Soc. Rev. 2006;35:454. - PubMed
    5. Kobayashi S. Mori Y. Fossey J. S. Salter M. M. Chem. Rev. 2011;111:2626. doi: 10.1021/cr100204f. - DOI - PubMed
    1. Kuriyama M. Soeta T. Hao X. Chen Q. Tomioka K. J. Am. Chem. Soc. 2004;126:8128. doi: 10.1021/ja0475398. - DOI - PubMed
    1. For representative examples, see:

    2. Hayashi T. Kawai M. Tokunaga N. Angew. Chem., Int. Ed. 2004;43:6125. doi: 10.1002/anie.200461338. - DOI - PubMed
    3. Otomaru Y. Tokunaga N. Shintani R. Hayashi T. Org. Lett. 2005;7:307. doi: 10.1021/ol0476063. - DOI - PubMed
    4. Weix D. J. Shi Y. L. Ellman J. A. J. Am. Chem. Soc. 2005;127:1092. doi: 10.1021/ja044003d. - DOI - PubMed
    5. Modern Rhodium-Catalyzed Organic Reactions, ed. P. A. Evans, Wiley-VCH, Weinheim, 2005
    6. Trincado M. Ellman J. A. Angew. Chem., Int. Ed. 2008;47:5623. doi: 10.1002/anie.200801137. - DOI - PubMed
    7. Cui Z. Yu H. J. Yang R. F. Gao W. Y. Feng C. G. Lin G. Q. J. Am. Chem. Soc. 2011;133:12394. doi: 10.1021/ja2046217. - DOI - PubMed
    8. Gao X. Wu B. Yan Z. Zhou Y. G. Org. Biomol. Chem. 2016;14:55. doi: 10.1039/C5OB02330K. - DOI - PubMed
    1. Tokunaga N. Otomaru Y. Okamoto K. Ueyama K. Shintani R. Hayashi T. J. Am. Chem. Soc. 2004;126:13584. doi: 10.1021/ja044790e. - DOI - PubMed