A methodological review on material growth and synthesis of solar-driven water splitting photoelectrochemical cells
- PMID: 35530222
- PMCID: PMC9072205
- DOI: 10.1039/c9ra05341g
A methodological review on material growth and synthesis of solar-driven water splitting photoelectrochemical cells
Abstract
As a renewable and sustainable energy source and an alternative to fossil fuels, solar-driven water splitting with photoelectrochemical (PEC) cell is a promising approach to obtain hydrogen fuel with its near-zero carbon emission pathway by transforming incident sunlight, the most abundant energy source. Because of its importance and future prospects, a number of architectures with their own features have been formed by various synthesis and growth methods. Because the materials themselves are one of the most dominant components, they determine the solar-to-hydrogen efficiency of the PEC cells. Thus, several representative PEC cells were reviewed by categorizing them as per synthesis and/or growth methods such as physical vapor deposition, chemical vapor deposition, electrochemical deposition, etc. This review provides researchers with an overview and acts as a guide for research on solar-driven water splitting PEC cells.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures












Similar articles
-
A sustainable molybdenum oxysulphide-cobalt phosphate photocatalyst for effectual solar-driven water splitting.J Adv Res. 2021 Aug 13;36:15-26. doi: 10.1016/j.jare.2021.08.006. eCollection 2022 Feb. J Adv Res. 2021. PMID: 35127161 Free PMC article.
-
Advances and challenges in the modification of photoelectrode materials for photoelectrocatalytic water splitting.Mater Horiz. 2024 Apr 2;11(7):1638-1657. doi: 10.1039/d4mh00020j. Mater Horiz. 2024. PMID: 38324371 Review.
-
Photoelectrochemical devices for solar water splitting - materials and challenges.Chem Soc Rev. 2017 Jul 31;46(15):4645-4660. doi: 10.1039/c6cs00306k. Chem Soc Rev. 2017. PMID: 28644493
-
Solar hydrogen generation: feature introduction.Opt Express. 2019 Apr 15;27(8):A292-A293. doi: 10.1364/OE.27.00A292. Opt Express. 2019. PMID: 31052883
-
Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge.Chem Soc Rev. 2019 Apr 1;48(7):1908-1971. doi: 10.1039/c8cs00699g. Chem Soc Rev. 2019. PMID: 30855624 Review.
Cited by
-
Band Diagram Insights into the Kinetic and Thermodynamic Engineering of Tandem Photocatalytic Cells.J Phys Chem C Nanomater Interfaces. 2024 Oct 23;128(43):18465-18482. doi: 10.1021/acs.jpcc.4c04508. eCollection 2024 Oct 31. J Phys Chem C Nanomater Interfaces. 2024. PMID: 39502801
References
-
- Miller E. L. Energy Environ. Sci. 2015;8:2809. doi: 10.1039/C5EE90047F. - DOI
-
- Thomas H., Armstrong F., Brandon N., David B., Barron A., Durrant J., Guwy A., Kucernak A., Lewis M., Maddy J., Metcalfe I., Porch A., Abbott J., Adderly B., Banares R., Beckmann M., Bowen P., Cowan A., Anadon L. D., Dickens N., Dinsdale R., Dodds P., Hawksworth S., Heckenast Z., Holmes N., Howes J., Hutchings G., Irvine J., Loughhead J., Madden B., Newborough M., Oxburgh R., Philibert C., Salisbury A., Saltmarsh J., Selby M., Taylor C., Trezona R., Wilkinson I., Williams C., Surkovic E., Davies P., Clarke A. and Koppelman B., Options for producing low-carbon hydrogen at scale, Royal Society, 2018
-
- Milne T. A., Elam C. C. and Evans R. J., Hydrogen from Biomass State of the Art and Research Challenges, National Renewable Energy Laboratory, 2002, IEA/H2/TR-02/001
-
- Pagliaro M. Konstandopoulos A. G. Ciriminna R. Palmisano G. Energy Environ. Sci. 2010;3:279. doi: 10.1039/B923793N. - DOI
Publication types
LinkOut - more resources
Full Text Sources
Research Materials