Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Oct 9;9(55):32081-32084.
doi: 10.1039/c9ra06108h. eCollection 2019 Oct 7.

Palladium-catalyzed oxidative cross-coupling for the synthesis of α-amino ketones

Affiliations

Palladium-catalyzed oxidative cross-coupling for the synthesis of α-amino ketones

Xiao-Hong Wei et al. RSC Adv. .

Abstract

A novel oxidative cross-coupling reaction for the synthesis of α-aryl α-amino ketones in the presence of palladium catalysts using T+BF4 - as an oxidant has been developed. This transformation was achieved by direct C-H oxidation of α-aminocarbonyl compounds and arylation. The mild reaction has a broad reaction scope and gives desired α-aryl α-amino ketones in moderate to excellent yields.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Transition metal-catalyzed reaction for the synthesis of α-aminocarbonyl compounds.
Scheme 2
Scheme 2. Radical-trapping experiment.
Scheme 3
Scheme 3. Proposed mechanism.

Similar articles

References

    1. Cho S. H. Kim J. Y. Kwak J. Chang S. Chem. Soc. Rev. 2011;40:5068–5083. doi: 10.1039/C1CS15082K. - DOI - PubMed
    2. Girard S. A. Knauber T. Li C.-J. Angew. Chem., Int. Ed. 2014;53:74–100. doi: 10.1002/anie.201304268. - DOI - PubMed
    3. Li C.-J. Acc. Chem. Res. 2009;42:335–344. doi: 10.1021/ar800164n. - DOI - PubMed
    4. Li C.-J. Li Z. Pure Appl. Chem. 2006;78:935.
    5. Scheuermann C. J. Chem.–Asian J. 2010;5:436–451. doi: 10.1002/asia.200900487. - DOI - PubMed
    6. Yeung C. S. Dong V. M. Chem. Rev. 2011;111:1215–1292. doi: 10.1021/cr100280d. - DOI - PubMed
    7. Cherney A. H. Kadunce N. T. Reisman S. E. Chem. Rev. 2015;115:9587–9652. doi: 10.1021/acs.chemrev.5b00162. - DOI - PMC - PubMed
    8. Newton C. G. Wang S.-G. Oliveira C. C. Cramer N. Chem. Rev. 2017;117:8908–8976. doi: 10.1021/acs.chemrev.6b00692. - DOI - PubMed
    1. Choudhary G. Peddinti R. K. Green Chem. 2011;13:276. doi: 10.1039/C0GC00830C. - DOI
    2. Gawande M. B. Bonifácio V. D. Luque R. Branco P. S. Varma R. S. Chem. Soc. Rev. 2013;42:5522. doi: 10.1039/C3CS60025D. - DOI - PubMed
    3. Jain S. L. Singhal S. Sain B. Green Chem. 2007;9:740. doi: 10.1039/B702311A. - DOI
    4. Khatik G. L. Kumar R. Chakraborti A. K. Org. Lett. 2006;8:2433. doi: 10.1021/ol060846t. - DOI - PubMed
    5. Reddy M. V. Kumar B. S. Lim K. T. Cho B. G. Jeong Y. T. Tetrahedron Lett. 2016;57:476. doi: 10.1016/j.tetlet.2015.12.061. - DOI
    6. Varma R. S. Green Chem. 1999;1:43. doi: 10.1039/A808223E. - DOI
    7. Zhang G. Zhang Y. Wang R. Angew. Chem., Int. Ed. 2011;50:10429–10432. doi: 10.1002/anie.201105123. - DOI - PubMed
    8. Zhang J. Cui Z. Wang F. Wang Y. Miao Z. Chen R. Green Chem. 2007;9:1341. doi: 10.1039/B710008F. - DOI
    9. Zhao L. Li C.-J. Angew. Chem., Int. Ed. 2008;47:7075–7078. doi: 10.1002/anie.200801367. - DOI - PubMed
    10. Zhu Z.-Q. Bai P. Huang Z.-Z. Org. Lett. 2014;16:4881–4883. doi: 10.1021/ol502402s. - DOI - PubMed
    1. Bodtke A. Langer P. Tetrahedron Lett. 2004;45:8741. doi: 10.1016/j.tetlet.2004.09.125. - DOI
    2. Bryan L. Richard A. Buzon K. F. Chiu T. Colgan M. L. Kasthurikrishnan N. Tetrahedron Lett. 2004;45:6887. doi: 10.1016/j.tetlet.2004.03.035. - DOI
    3. Chandrashaker V. Taniguchi M. Ptaszek M. Lindsey J. S. Tetrahedron. 2012;68:6957. doi: 10.1016/j.tet.2012.05.080. - DOI
    4. Medaer B. P. Hoornaert G. J. Tetrahedron. 1999;55:3987. doi: 10.1016/S0040-4020(99)00087-3. - DOI
    5. Murkute A. D. Jackson J. E. Miller D. J. J. Catal. 2011;278:189–199. doi: 10.1016/j.jcat.2010.12.001. - DOI
    6. Gellman S. H. Acc. Chem. Res. 1998;31:173–180. doi: 10.1021/ar960298r. - DOI
    7. Jose M. C. Humberto R.-S. Curr. Org. Chem. 2008;12:524–543. doi: 10.2174/138527208784245996. - DOI
    8. Klingler F. D. Acc. Chem. Res. 2007;40:1367–1376. doi: 10.1021/ar700100e. - DOI - PubMed
    9. Ohfune Y. Acc. Chem. Res. 1992;25:360–366. doi: 10.1021/ar00020a006. - DOI
    10. Farahi M. Tamaddon F. Karami B. Pasdar S. Tetrahedron Lett. 2015;56:1887–1890. doi: 10.1016/j.tetlet.2015.02.105. - DOI
    11. Tamaddon F. Dehghani Tafti A. Synlett. 2016;27:2217–2220. doi: 10.1055/s-0035-1561663. - DOI
    1. Xie J. Huang Z.-Z. Angew. Chem., Int. Ed. 2010;49:10181–10185. doi: 10.1002/anie.201004940. - DOI - PubMed
    2. Bandar J. S. Lambert T. H. J. Am. Chem. Soc. 2013;135:11799–11802. doi: 10.1021/ja407277a. - DOI - PMC - PubMed
    3. Binder J. T. Cordier C. J. Fu G. C. J. Am. Chem. Soc. 2012;134:17003–17006. doi: 10.1021/ja308460z. - DOI - PMC - PubMed
    4. Huo C. Wang C. Wu M. Jia X. Xie H. Yuan Y. Adv. Synth. Catal. 2014;356:411–415. doi: 10.1002/adsc.201300535. - DOI
    5. Huo C. Wu M. Chen F. Jia X. Yuan Y. Xie H. Chem. Commun. 2015;51:4708–4711. doi: 10.1039/C4CC09922B. - DOI - PubMed
    6. Huo C. Xie H. Chen F. Tang J. Wang Y. Adv. Synth. Catal. 2016;358:724–730. doi: 10.1002/adsc.201500893. - DOI
    7. Kotha S. Acc. Chem. Res. 2003;36:342–351. doi: 10.1021/ar020147q. - DOI - PubMed
    8. Nájera C. Sansano J. M. Chem. Rev. 2007;107:4584–4671. doi: 10.1021/cr050580o. - DOI - PubMed
    9. Saito S. Tsubogo T. Kobayashi S. J. Am. Chem. Soc. 2007;129:5364–5365. doi: 10.1021/ja0709730. - DOI - PubMed
    10. Salman M. Zhu Z.-Q. Huang Z.-Z. Org. Lett. 2016;18:1526–1529. doi: 10.1021/acs.orglett.6b00162. - DOI - PubMed
    11. Trost B. M. Miege F. J. Am. Chem. Soc. 2014;136:3016–3019. doi: 10.1021/ja4129394. - DOI - PMC - PubMed
    12. Wan M. Lou H. Liu L. Chem. Commun. 2015;51:13953–13956. doi: 10.1039/C5CC04791A. - DOI - PubMed
    13. Werner E. W. Mei T.-S. Burckle A. J. Sigman M. S. Science. 2012;338:1455–1458. doi: 10.1126/science.1229208. - DOI - PMC - PubMed
    14. Xue Z.-Y. Li Q.-H. Tao H.-Y. Wang C.-J. J. Am. Chem. Soc. 2011;133:11757–11765. doi: 10.1021/ja2043563. - DOI - PubMed
    15. Hui Y. Yilan X. Rui D. Yan F. Adv. Synth. Catal. 2017;359:39–43. doi: 10.1002/adsc.201600712. - DOI
    16. Wei X.-H. Wang G.-W. Yang S.-D. Chem. Commun. 2015;51:832–835. doi: 10.1039/C4CC07361D. - DOI - PubMed
    17. Wei X.-H. Zhao L.-B. Zhou H.-C. RSC Adv. 2017;7:16561–16564. doi: 10.1039/C7RA00664K. - DOI
    18. Wei Y. Wang J. Wang Y. Yao X. Yang C. Huo C. Org. Biomol. Chem. 2018;16:4985–4989. doi: 10.1039/C8OB01068D. - DOI - PubMed
    19. Zhang Y. Yang X. Zhou H. Li S. Zhu Y. Li Y. Org. Chem. Front. 2018;5:2120–2125. doi: 10.1039/C8QO00341F. - DOI
    20. Daggupati R. V. Malapaka C. Org. Chem. Front. 2018;5:788–792. doi: 10.1039/C7QO00851A. - DOI
    21. Revathi L. Ravindar L. Fang W.-Y. Rakesh K. P. Qin H.-L. Adv. Synth. Catal. 2018;360:4652–4698. doi: 10.1002/adsc.201800736. - DOI
    22. Wei X.-H. Zhao L.-B. Zhou H.-C. RSC Adv. 2017;7:16561–16564. doi: 10.1039/C7RA00664K. - DOI
    23. Zha G.-F. Bare G. A. L. Leng J. Shang Z.-P. Luo Z. Qin H.-L. Adv. Synth. Catal. 2017;359:3237–3242. doi: 10.1002/adsc.201700688. - DOI
    24. Zhang X. Rakesh K. P. Ravindar L. Qin H.-L. Green Chem. 2018;20:4790–4833. doi: 10.1039/C8GC02382D. - DOI
    25. Zhao C. Zha G.-F. Fang W.-Y. Rakesh K. P. Qin H.-L. Eur. J. Org. Chem. 2019;2019:1801–1807. doi: 10.1002/ejoc.201801888. - DOI
    1. Wu J.-C. Song R.-J. Wang Z.-Q. Huang X.-C. Xie Y.-X. Li J.-H. Angew. Chem., Int. Ed. 2012;51:3453–3457. doi: 10.1002/anie.201109027. - DOI - PubMed
    2. Wei W.-T. Song R.-J. Li J.-H. Adv. Synth. Catal. 2014;356:1703–1707. doi: 10.1002/adsc.201301091. - DOI