Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 20;9(45):26014-26023.
doi: 10.1039/c9ra06313g. eCollection 2019 Aug 19.

Ramified derivatives of 5-(perylen-3-ylethynyl)uracil-1-acetic acid and their antiviral properties

Affiliations

Ramified derivatives of 5-(perylen-3-ylethynyl)uracil-1-acetic acid and their antiviral properties

Ksenia A Sapozhnikova et al. RSC Adv. .

Abstract

The propargylamide of N3-Pom-protected 5-(perylen-3-ylethynyl)uracil acetic acid, a universal precursor, was used in a CuAAC click reaction for the synthesis of several derivatives, including three ramified molecules with high activities against tick-borne encephalitis virus (TBEV). Pentaerythritol-based polyazides were used for the assembly of molecules containing 2⋯4 antiviral 5-(perylen-3-ylethynyl)uracil scaffolds, the first examples of polyvalent perylene antivirals. Cluster compounds showed enhanced absorbance, however, their fluorescence was reduced due to self-quenching. Due to the solubility issues, Pom group removal succeeded only for compounds with one peryleneethynyluracil unit. Four compounds, including one ramified cluster 9f, showed remarkable 1⋯3 nM EC50 values against TBEV in cell culture.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest to declare.

Figures

Fig. 1
Fig. 1. Structures of broad spectrum antiviral peryleneethynyluracil compounds.
Scheme 1
Scheme 1. Synthesis of azides. Conditions: (a) methanesulfonyl chloride, NEt3, DCM; (b) NaN3, DMSO, rt, 12 h, 32% (2), 27% (3), 8% (4).
Scheme 2
Scheme 2. Synthesis of the model and target compounds. Conditions: (a) propargylamine, PyBOP, DIPEA, DMF, 0 °C, 55%; (b) CuSO4·5H2O, TBTA, aq. ascorbic acid, DMSO, rt, 12 h, azide (benzylazide, azidoethanol, or 2–5), 75% (9a); 67% (9b); 81% (9c), 70% (9d), 54% (9e), 38% (9f); (c) NaOH, DMSO, MeOH, rt, 30 min, 35% (10a), 40% (10b), 30% (10c).
Fig. 2
Fig. 2. Absorbance spectra of compounds 9c–f, 10c at 5 μM concentrations: (A) 0.2% DMSO in 96% EtOH, (B) 2% DMSO in 96% EtOH, (C) 20% DMSO in 96% EtOH.
Fig. 3
Fig. 3. Fluorescence spectra of 9c–f, 10c (0.1 μM, 96% EtOH, λex 420 nm).
Fig. 4
Fig. 4. Structures of compounds optimized using SYBYL-X 2.1 software; molecular surfaces are colored by the hydrophobic potential (left scale).

Similar articles

Cited by

References

    1. Korshun V. A. Manasova E. V. Balakin K. V. Malakhov A. D. Perepelov A. V. Sokolova T. A. Berlin Y. A. Nucleosides Nucleotides. 1998;17:1809–1812. doi: 10.1080/07328319808004718. - DOI
    2. Skorobogatyi M. V. Malakhov A. D. Pchelintseva A. A. Turban A. A. Bondarev S. L. Korshun V. A. ChemBioChem. 2006;7:810–816. doi: 10.1002/cbic.200600040. - DOI - PubMed
    1. Andronova V. L. Skorobogatyi M. V. Manasova E. V. Berlin Y. A. Korshun V. A. Galegov G. A. Russ. J. Bioorg. Chem. 2003;29:262–266. doi: 10.1023/A:1023936516589. - DOI - PubMed
    2. Skorobogatyi M. V. Ustinov A. V. Stepanova I. A. Pchelintseva A. A. Petrunina A. L. Andronova V. L. Galegov G. A. Malakhov A. D. Korshun V. A. Org. Biomol. Chem. 2006;4:1091–1096. doi: 10.1039/B516804J. - DOI - PubMed
    3. St. Vincent M. R. Colpitts C. C. Ustinov A. V. Muqadas M. Joyce M. A. Barsby N. A. Epand R. F. Epand R. M. Khramyshev S. A. Valueva O. A. Korshun V. A. Tyrrell D. L. J. Schang L. M. Proc. Natl. Acad. Sci. U. S. A. 2010;107:17339–17344. doi: 10.1073/pnas.1010026107. - DOI - PMC - PubMed
    4. Orlov A. A. Chistov A. A. Kozlovskaya L. I. Ustinov A. V. Korshun V. A. Karganova G. G. Osolodkin D. I. Med. Chem. Commun. 2016;7:495–499. doi: 10.1039/C5MD00538H. - DOI
    1. Colpitts C. C. Ustinov A. V. Epand R. F. Epand R. M. Korshun V. A. Schang L. M. J. Virol. 2013;87:3640–3654. doi: 10.1128/JVI.02882-12. - DOI - PMC - PubMed
    1. Schang L. M. Future Virol. 2014;9:283–299. doi: 10.2217/fvl.13.130. - DOI
    1. Vigant F. Hollmann A. Lee J. Santos N. C. Jung M. E. Lee B. J. Virol. 2014;88:1849–1854. doi: 10.1128/JVI.02907-13. - DOI - PMC - PubMed
    2. Vigant F. Santos N. C. Lee B. Nat. Rev. Microbiol. 2015;13:426–437. doi: 10.1038/nrmicro3475. - DOI - PMC - PubMed