Power analysis for cluster randomized trials with continuous coprimary endpoints
- PMID: 35531926
- PMCID: PMC11321238
- DOI: 10.1111/biom.13692
Power analysis for cluster randomized trials with continuous coprimary endpoints
Abstract
Pragmatic trials evaluating health care interventions often adopt cluster randomization due to scientific or logistical considerations. Systematic reviews have shown that coprimary endpoints are not uncommon in pragmatic trials but are seldom recognized in sample size or power calculations. While methods for power analysis based on K ( ) binary coprimary endpoints are available for cluster randomized trials (CRTs), to our knowledge, methods for continuous coprimary endpoints are not yet available. Assuming a multivariate linear mixed model (MLMM) that accounts for multiple types of intraclass correlation coefficients among the observations in each cluster, we derive the closed-form joint distribution of K treatment effect estimators to facilitate sample size and power determination with different types of null hypotheses under equal cluster sizes. We characterize the relationship between the power of each test and different types of correlation parameters. We further relax the equal cluster size assumption and approximate the joint distribution of the K treatment effect estimators through the mean and coefficient of variation of cluster sizes. Our simulation studies with a finite number of clusters indicate that the predicted power by our method agrees well with the empirical power, when the parameters in the MLMM are estimated via the expectation-maximization algorithm. An application to a real CRT is presented to illustrate the proposed method.
Keywords: coefficient of variation; general linear hypothesis; intersection-union test; multivariate linear mixed model; sample size determination; unequal cluster size.
© 2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.
Figures
References
-
- Beilina L, Karchevskii E and Karchevskii M (2017) Numerical Linear Algebra: Theory and Applications. Cham, Switzerland: Springer.
-
- Chuang-Stein C, Stryszak P, Dmitrienko A and Offen W (2007) Challenge of multiple co-primary endpoints: a new approach. Statistics in Medicine, 26, 1181–1192. - PubMed
-
- Eldridge SM, Ashby D and Kerry S (2006) Sample size for cluster randomized trials: effect of coefficient of variation of cluster size and analysis method. International Journal of Epidemiology, 35, 1292–1300. - PubMed
-
- Kordzakhia G, Siddiqui O and Huque MF (2010) Method of balanced adjustment in testing co-primary endpoints. Statistics in Medicine, 29, 2055–2066. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
