Isolation of gametes and zygotes from Setaria viridis
- PMID: 35534650
- DOI: 10.1007/s10265-022-01393-w
Isolation of gametes and zygotes from Setaria viridis
Abstract
Setaria viridis, the wild ancestor of foxtail millet (Setaria italica), is an effective model plant for larger C4 crops because S. viridis has several desirable traits, such as short generation time, prolific seed production and a small genome size. These advantages are well suited for investigating molecular mechanisms in angiosperms, especially C4 crop species. Here, we report a procedure for isolating gametes and zygotes from S. viridis flowers. To isolate egg cells, ovaries were harvested from unpollinated mature flowers and cut transversely, which allowed direct access to the embryo sac. Thereafter, an egg cell was released from the cut end of the basal portion of the dissected ovary. To isolate sperm cells, pollen grains released from anthers were immersed in a mannitol solution, resulting in pollen-grain bursting, which released sperm cells. Additionally, S. viridis zygotes were successfully isolated from freshly pollinated flowers. Isolated zygotes cultured in a liquid medium developed into globular-like embryos and cell masses. Thus, isolated S. viridis gametes, zygotes and embryos are attainable for detailed observations and investigations of fertilization and developmental events in angiosperms.
Keywords: Egg cell; Setaria viridis; Sperm cell; Zygote; Zygotic development.
© 2022. The Author(s) under exclusive licence to The Botanical Society of Japan.
References
-
- Anderson SN, Johnson CS, Jones DS, Conrad LJ, Gou X, Russell SD, Sundaresan V (2013) Transcriptomes of isolated Oryza sativa gametes characterized by deep sequencing: evidence for distinct sex-dependent chromatin and epigenetic states before fertilization. Plant J 76:729–741 - PubMed
-
- Anderson SN, Johnson CS, Chesnut J, Jones DS, Khanday I, Woodhouse M, Li C, Conrad LJ, Russell SD, Sundaresan V (2017) The zygotic transition is initiated in unicellular plant zygotes with asymmetric activation of parental genomes. Dev Cell 43:349–358 - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
