Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Nov;17(11):2342-2346.
doi: 10.4103/1673-5374.336869.

Neuroinflammation as a mechanism linking hypertension with the increased risk of Alzheimer's disease

Affiliations
Review

Neuroinflammation as a mechanism linking hypertension with the increased risk of Alzheimer's disease

Ekta Bajwa et al. Neural Regen Res. 2022 Nov.

Abstract

Alzheimer's disease, the most common type of dementia among older adults, currently cannot be prevented or effectively treated. Only a very small percentage of Alzheimer's disease cases have an established genetic cause. The majority of Alzheimer's disease cases lack a clear causative event, but several modifiable factors have been associated with an increased risk of this disease. Persistent midlife hypertension is one such risk factor, which can be effectively controlled through changes in diet, lifestyle, and antihypertensive drugs. Identifying molecular mechanisms linking modifiable risk factors with the increased risk of Alzheimer's disease could enhance our understanding of this disease and lead to identification of novel targets and therapeutic approaches for effective treatments. Glial cell-driven neuroinflammation is one of the key pathological features of Alzheimer's disease. In this review, we illustrate that neuroinflammation could also be one of the possible mechanisms linking hypertension and Alzheimer's disease. Animal studies have demonstrated that chronically elevated blood pressure leads to adverse glial activation and increased brain inflammatory mediators. We highlight damage to cerebral microvasculature and locally activated renin-angiotensin system as the key pathogenetic mechanisms linking hypertension to neuroinflammation and the accompanying neurodegeneration. The role of tumor necrosis factor-α and interleukin-1β as pro-inflammatory signaling molecules providing this link is discussed. We also summarize the available experimental data indicating that neuroinflammatory changes and glial activation can be reversed by several different classes of antihypertensive medicines. These studies suggest antihypertensives could be beneficial in Alzheimer's disease not only due to their ability to control the blood pressure, but also due to their anti-neuroinflammatory effects. Confirmation of these observations in human subjects is required and recent advances in the brain imaging techniques allowing visualization of both microglia and astrocyte activation will be essential for this research.

Keywords: Alzheimer’s disease; antihypertensive medicines; astrocytes; blood-brain barrier; high blood pressure; microglia; neurodegenerative disorders; paraventricular nucleus; renin-angiotensin system.

PubMed Disclaimer

Conflict of interest statement

None

Figures

Figure 1
Figure 1
A schematic diagram showing the cellular and molecular mechanisms discussed in this article that link hypertension, neuroinflammation and Alzheimer’s disease. Aβ: Amyloid β peptides; BBB: blood-brain barrier; IL: interleukin; MMPs: matrix metalloproteinases; NAD+: nicotinamide adenine dinucleotide; NLRP3: nucleotide-binding domain, leucine-rich-containing family pyrin domain containing 3; p-Tau: hyperphosphorylated tau protein; TNF: tumor necrosis factor-α.

References

    1. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, et al. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000;21:383–421. - PMC - PubMed
    1. Alexander MR, Norlander AE, Elijovich F, Atreya RV, Gaye A, Gnecco JS, Laffer CL, Galindo CL, Madhur MS. Human monocyte transcriptional profiling identifies IL-18 receptor accessory protein and lactoferrin as novel immune targets in hypertension. Br J Pharmacol. 2019;176:2015–2027. - PMC - PubMed
    1. Alzheimer's Disease International. World Alzheimer Report 2015: The global impact of dementia: An analysis of prevalence, incidence, cost and trends. 2015. [Accessed September 25, 2021]. Available at https://www.alzint.org/resource/world-alzheimer-report-2015/
    1. Arranz AM, De Strooper B. The role of astroglia in Alzheimer's disease: pathophysiology and clinical implications. Lancet Neurol. 2019;18:406–414. - PubMed
    1. Asraf K, Torika N, Apte RN, Fleisher-Berkovich S. Microglial activation is modulated by captopril: in vitro and in vivo studies. Front Cell Neurosci. 2018;12:116. - PMC - PubMed