Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar-Apr;20(2):944-954.
doi: 10.1109/TCBB.2022.3173323. Epub 2023 Apr 3.

ELMo4m6A: A Contextual Language Embedding-Based Predictor for Detecting RNA N6-Methyladenosine Sites

ELMo4m6A: A Contextual Language Embedding-Based Predictor for Detecting RNA N6-Methyladenosine Sites

Yongxian Fan et al. IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr.

Abstract

N6-methyladenosine (m6A) is a universal post-transcriptional modification of RNAs, and it is widely involved in various biological processes. Identifying m6A modification sites accurately is indispensable to further investigate m6A-mediated biological functions. How to better represent RNA sequences is crucial for building effective computational methods for detecting m6A modification sites. However, traditional encoding methods require complex biological prior knowledge and are time-consuming. Furthermore, most of the existing m6A sites prediction methods are limited to single species, and few methods are able to predict m6A sites across different species and tissues. Thus, it is necessary to design a more efficient computational method to predict m6A sites across multiple species and tissues. In this paper, we proposed ELMo4m6A, a contextual language embedding-based method for predicting m6A sites from RNA sequences without any prior knowledge. ELMo4m6A first learns embeddings of RNA sequences using a language model ELMo, then uses a hybrid convolutional neural network (CNN) and long short-term memory (LSTM) to identify m6A sites. The results of 5-fold cross-validation and independent testing demonstrate that ELMo4m6A is superior to state-of-the-art methods. Moreover, we applied integrated gradients to find potential sequence patterns contributing to m6A sites.

PubMed Disclaimer

Similar articles

Cited by

Publication types