Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul:152:110339.
doi: 10.1016/j.ejrad.2022.110339. Epub 2022 May 5.

Improved interobserver agreement on nodule type and Lung-RADS classification of subsolid nodules using computer-aided solid component measurement

Affiliations

Improved interobserver agreement on nodule type and Lung-RADS classification of subsolid nodules using computer-aided solid component measurement

Jun Shu et al. Eur J Radiol. 2022 Jul.

Abstract

Purpose: The Lung CT Screening Reporting and Data System (Lung-RADS) classification of subsolid nodules (SSNs) can be challenging due to limited interobserver agreement in determining the type and size of the nodule. Our study aimed to assess the effect of a computer-aided method on the interobserver agreement of Lung-RADS classification for SSNs.

Materials and methods: This study consisted of 156 SSNs in 121 patients who underwent initial CT screening for lung cancer. Three independent readers determined the nodule type and measured the size of the entire nodule as well as the solid component, first without and then assisted by a semi-automated computer-aided tool. They assigned to each nodule the corresponding Lung-RADS 1.1 category. Agreement in size measurements was assessed by intraclass correlation coefficient (ICC) and Bland-Altman indexes, while agreement in nodule type and Lung-RADS was determined using Fleiss kappa statistics. The relationship between final diagnosis of the nodules and Lung-RADS classifications was also evaluated.

Results: Among the 156 nodules, manual size measurement reached an ICC of 0.994, and 48 nodules contained solid component measured by all the three readers both manually and semi-automatically. ICCs for the solid component measurement were 0.952, 0.997 and 0.996 for manual diameter, semi- automated diameter and volume measurement, respectively. Bias and 95% limits of agreement for average diameter of solid component were smaller with semi-automated measurements than with manual measurements. Kappa values of semi-automated assessment for nodule type (0.974) and Lung-RADS classification (0.958 for diameter and 0.952 for volume) were higher than with the manual measurements (0.783 for nodule type and 0.652 for Lung-RADS classification). Compared to manual work, the semi-automated assessment identified more 4B nodules among the 26 pathologically confirmed invasive adenocarcinomas (IACs).

Conclusion: Semi-automated assessment could improve the interobserver agreement of nodule type and Lung-RADS classification for SSNs, and be inclined to classify SSNs corresponding to pathologically confirmed IACs into higher risk categories.

Keywords: Cancer screening; Interobserver variation; Lung cancer; Multidetector computed tomography.

PubMed Disclaimer

Similar articles

Cited by