Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 3;8(2):1014-1021.
doi: 10.1039/c7ra12652b. eCollection 2018 Jan 2.

Synthesis, chiroptical properties, and self-assembled nanoparticles of chiral conjugated polymers based on optically stable helical aromatic esters

Affiliations

Synthesis, chiroptical properties, and self-assembled nanoparticles of chiral conjugated polymers based on optically stable helical aromatic esters

Chao Zhang et al. RSC Adv. .

Abstract

By Suzuki coupling reaction, three pairs of chiral conjugated polymers with optically stable helical aromatic ester subunits as the main-chain were designed and synthesized. Polymers (+)-P-P1 and (-)-M-P1, (+)-P-P2 and (-)-M-P2 showed strong fluorescence emission, strong mirror image CD and circularly polarized luminescence (CPL) signals in THF. For polymers (+)-P-P3 and (-)-M-P3, containing the tetraphenylethene (TPE) moiety, they not only showed obvious aggregation induced enhancement emission (AIEE), but also exhibited mirror image CD signals and aggregation-induced enhancement CPL signals in THF-water mixtures. Moreover, (+)-P-P3 and (-)-M-P3 could also form chiral nanoparticles by solvent evaporation induced self-assembly. Interestingly, it was further found that the size of the nanoparticles could be controlled by the changing of THF/water ratio, and their CPL properties were also shown.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Synthesis of chiral conjugated polymers (+)-P-P1–3 and (−)-M-P1–3. M1: 2,2′-bithiophene-5,5′-diboronic acid bis(pinacol) ester; M2: 4,4′-biphenyldiboronic acid bis(pinacol) ester; M3: 1,2-diphenyl-1,2-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethane; M4 was obtained by the literature's method. Conditions: (i) DMF (3 mL), toluene (2 mL), Pd(PPh3)4 (0.1 equiv.), K2CO3 (8 equiv.), 110 °C.
Fig. 1
Fig. 1. (a) UV-vis spectra of (+)-P-P1–3 in THF. (b) Fluorescence spectra of (+)-P-P3 in THF–water mixtures. (c) Plot of (I/I0) values of (+)-P-P3versus the compositions of the aqueous mixtures. (d) Images of (+)-P-P3 in THF–water under 365 nm UV lamp. c = 1.0 × 10−4 M corresponding to the helical aromatic esters moiety.
Fig. 2
Fig. 2. (a) CD spectra of (+)-P-P1 and (−)-M-P1 in THF; (b) CD spectra of (+)-P-P2 and (−)-M-P2 in THF; (c) CPL spectra of (+)-P-P1 and (−)-M-P1 in THF; (d) CPL spectra of (+)-P-P2 and (−)-M-P2 in THF. c = 1.0 × 10−4 M corresponding to the helical aromatic esters moiety.
Fig. 3
Fig. 3. (a) CD spectra of (+)-P-P3 and (−)-M-P3 in THF–water mixtures; (b) CPL spectra of (+)-P-P3 and (−)-M-P3 in THF and THF–water mixtures (v/v, 20/80). c = 1.0 × 10−4 M corresponding to the TPE moiety.
Fig. 4
Fig. 4. SEM images of the nanoparticles self-assembled by (a) (+)-P-P3 and (b) (−)-M-P3 from THF–water (v/v, 40/60); (c) (+)-P-P3 and (d) (−)-M-P3 from THF–water (v/v, 20/80).
Fig. 5
Fig. 5. UV-vis spectra and fluorescence spectra of the nanoparticles assembled by (+)-P-P3.
Fig. 6
Fig. 6. (a) CD spectra and (b) CPL spectra of the nanoparticles assembled by (+)-P-P3 and (−)-M-P3. The self-assembled nanoparticles were obtained from THF–water (20/80, v/v).

Similar articles

Cited by

References

    1. Steiner F. Lupton J. M. Vogelsang J. J. Am. Chem. Soc. 2017;139:9787–9790. doi: 10.1021/jacs.7b04619. - DOI - PubMed
    2. Zhang Z. G. Yang Y. Yao J. Xue L. Chen S. Li X. Morrison W. Yang C. Li Y. Angew. Chem., Int. Ed. 2017;56:13503–13507. doi: 10.1002/anie.201707678. - DOI - PubMed
    3. Boroumand F. A. Fry P. W. Lidzey D. G. Nano Lett. 2005;5:67–71. doi: 10.1021/nl048382k. - DOI - PubMed
    4. Vohra V. Giovanella U. Tubino R. Murata H. Botta C. ACS Nano. 2011;5:5572–5578. doi: 10.1021/nn201029c. - DOI - PubMed
    5. Vohra V. Giovanella U. Tubino R. Murata H. Botta C. J. Am. Chem. Soc. 2017;139:11666–11669. doi: 10.1021/jacs.7b05025. - DOI - PubMed
    6. Lv Y. Liu P. Ding H. Wu Y. Yan Y. Liu H. Wang X. Huang F. Zhao Y. Tian Z. ACS Appl. Mater. Interfaces. 2015;7:20640–20648. doi: 10.1021/acsami.5b05150. - DOI - PubMed
    7. Feng X. Lv F. Liu L. Tang H. Xing C. Yang Q. Wang S. ACS Appl. Mater. Interfaces. 2010;2:2429–2435. doi: 10.1021/am100435k. - DOI - PubMed
    1. Pecher J. Mecking S. Chem. Rev. 2010;110:6260–6279. doi: 10.1021/cr100132y. - DOI - PubMed
    2. Jiang Y. Upputuri P. K. Xie C. Lyu Y. Zhang L. Xiong Q. Pramanic M. Pu K. Nano Lett. 2017;17:4964–4969. doi: 10.1021/acs.nanolett.7b02106. - DOI - PubMed
    3. Vithanage D. A. Kanibolotsky A. L. Rajbhandari S. Manousiadis P. P. Sajjad M. T. Chun H. Faulkner G. E. O'Brien D. C. Skabara P. J. Samuel I. D. W. Turnbull G. A. J. Mater. Chem. C. 2017;5:8916–8920. doi: 10.1039/C7TC03787B. - DOI
    4. Lidster B. J. Kumar D. R. Spring A. M. Yu C.-Y. Turner M. L. Polym. Chem. 2016;7:5544–5551. doi: 10.1039/C6PY01186A. - DOI - PubMed
    1. Zhang S. Sheng Y. Wei G. Quan Y. Cheng Y. Zhu C. Polym. Chem. 2015;6:2416–2422. doi: 10.1039/C4PY01689K. - DOI
    2. Wei J. Zhang X. Zhao Y. Li R. Macromol. Chem. Phys. 2013;214:2232–2238.
    3. Meskers S. C. J. Peeters E. Langeveld-Voss B. M. W. Janssen R. A. J. Adv. Mater. 2000;12:589–594. doi: 10.1002/(SICI)1521-4095(200004)12:8<589::AID-ADMA589>3.0.CO;2-C. - DOI
    4. Peeters E. Christiaans M. P. T. Janssen R. A. J. Schoo H. F. M. Dekkers H. P. J. M. Meijer E. W. J. Am. Chem. Soc. 1997;119:9909–9910. doi: 10.1021/ja971912c. - DOI
    5. Hayasaka H. Miyashita T. Tamura K. Akagi K. Adv. Funct. Mater. 2010;20:1243–1250. doi: 10.1002/adfm.200902059. - DOI
    1. Lim C.-K. Cho M. J. Singh A. Li Q. Kim W. J. Jee H. S. Fillman K. L. Carpenter S. H. Neidig M. L. Baev A. Swihart M. T. Prasad P. N. Nano Lett. 2016;16:5451–5455. doi: 10.1021/acs.nanolett.6b01874. - DOI - PubMed
    2. Hou J. Song F. Wang L. Wei G. Cheng Y. Zhu C. Macromolecules. 2012;45:7835–7842. doi: 10.1021/ma301553y. - DOI
    3. Shao H. Lockman J. W. Parquette J. R. J. Am. Chem. Soc. 2007;129:1884–1885. doi: 10.1021/ja068154n. - DOI - PubMed
    4. Ho R.-M. Li M.-C. Lin S.-C. Wang H.-F. Lee Y.-D. Hasegawa H. Thomas E. J. Am. Chem. Soc. 2012;134:10974–10986. doi: 10.1021/ja303513f. - DOI - PubMed
    1. Huang W.-S. Hu Q.-S. Zheng X.-F. Anderson J. Pu L. J. Am. Chem. Soc. 1997;119:4313–4314. doi: 10.1021/ja964285k. - DOI
    2. Hu Q.-S. Huang W.-S. Vitharana D. Zheng X.-F. Pu L. J. Am. Chem. Soc. 1997;119:12454–12464. doi: 10.1021/ja972623r. - DOI
    3. Pu L. Acc. Chem. Res. 2017;50:1032–1040. doi: 10.1021/acs.accounts.7b00036. - DOI - PubMed
    4. Zhang X. Wang C. Wang P. Du J. Zhang G. Pu L. Chem. Sci. 2016;7:3614–3620. doi: 10.1039/C6SC00266H. - DOI - PMC - PubMed
    5. Huang W.-S. Hu Q.-S. Pu L. J. Org. Chem. 1999;64:7940–7956. doi: 10.1021/jo990992v. - DOI - PubMed