Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 11;9(63):36600-36607.
doi: 10.1039/c9ra06680b.

Palladium/phosphorus-functionalized porous organic polymer with tunable surface wettability for water-mediated Suzuki-Miyaura coupling reaction

Affiliations

Palladium/phosphorus-functionalized porous organic polymer with tunable surface wettability for water-mediated Suzuki-Miyaura coupling reaction

Yizhu Lei et al. RSC Adv. .

Abstract

A series of phosphorus-functionalized porous organic polymers supported palladium catalysts with tunable surface wettability were successfully prepared using an easy copolymerization and successive immobilization method. The obtained polymers were carefully characterized by many physicochemical methods. Characterization results suggested that the prepared materials featured hierarchically porous structures, high pore volumes, tunable surface wettability and strong electron-donating ability towards palladium species. We demonstrated the use of these solid catalysts for water-mediated Suzuki-Miyaura coupling reactions. It was found that the surface wettability of the prepared catalysts has an important influence on their catalytic activities. The optimal catalyst, which has excellent amphipathicity and relatively high phosphorus concentration, displayed superior catalytic activity compared to the other catalysts. Under ambient conditions, a variety of aryl chlorides can be efficiently transformed to biaryls in high yields. Moreover, the catalyst could be easily recovered and reused at least six times.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Synthetic scheme for the PTVP-MBA-x polymers.
Fig. 1
Fig. 1. N2 absorption–desorption isotherms and pore size distribution curves (inset) of PTVP-MBA-x samples at 77 K. (A) PTVP-MBA-0.2, (B) PTVP-MBA-0.3, (C) PTVP-MBA-0.4, (D) PTVP-MBA-0.5, (E) PTVP-MBA-0.6, (F) PTVP-MBA-0.8.
Fig. 2
Fig. 2. SEM images for: (A) PTVP-MBA-0.2; (B) PTVP-MBA-0.4; (C) PTVP-MBA-0.6 and (D) PdII@PTVP-MBA-0.4.
Fig. 3
Fig. 3. FT-IR spectra of the monomers and polymers: (a) TVP, (b) MBA, (c) POL-PPh3, (d) PTVP-MBA-0.2, (e) PTVP-MBA-0.4, and (f) PTVP-MBA-0.6.
Fig. 4
Fig. 4. (A) Pd 3d XPS spectra of PdII@PTVP-MBA-0.2 (a), PdII@PTVP-MBA-0.4 (b) and PdII@PTVP-MBA-0.6 (c); (B) P 2p XPS spectra of PTVP-MBA-0.4 (a), PdII@PTVP-MBA-0.2 (b), PdII@PTVP-MBA-0.4 (c) and PdII@PTVP-MBA-0.6 (d).
Fig. 5
Fig. 5. Contact angle measurements of the prepared catalysts for water.
Fig. 6
Fig. 6. (A) Reuse of the PdII@PTVP-MBA-0.4 for the Suzuki cross-couplings of chlorobenzene with phenylboronic acid. The reaction conditions were the same with that of entry 19 in Table 2; (B) TEM image for the recycling PdII@PTVP-MBA-0.4 after the first run; (C) TEM image for the recovered PdII@PTVP-MBA-0.4 after the 6th recycle; (D) Pd 3d XPS spectra of recycling PdII@PTVP-MBA-0.4: (a) after the first catalytic run, (b) after the 6th recycle.
Fig. 7
Fig. 7. Reaction kinetics of the catalyst.

Similar articles

References

    1. Kitanosono T. Masuda K. Xu P. Kobayashi S. Chem. Rev. 2018;118:679–746. doi: 10.1021/acs.chemrev.7b00417. - DOI - PubMed
    2. Nasseri M. A. Alavi S. A. Kazemnejadi M. Allahresani A. RSC Adv. 2019;9:20749–20759. doi: 10.1039/C9RA03406D. - DOI
    3. Dong Y. Chen Y. Q. Jv J. J. Li Y. Li W. H. Dong Y. B. RSC Adv. 2019;9:21671–21678. doi: 10.1039/C9RA04103F. - DOI
    1. Breslow R., A Fifty-Year Perspective on Chemistry in Water, in Organic Reactions in Water, ed. U. M. Lindström, Blackwell, Oxford, UK, 2007, pp. 1–28
    2. Chen Z. and Ren H., The Applications of Water as Reagents in Organic Synthesis, in Solvents as Reagents in Organic Synthesis, ed. X.-F. Wu, Wiley-VCH, New York, 2017, pp. 1–44
    1. Narayan S. Muldoon J. Finn M. G. Fokin V. V. Kolb H. C. Sharpless K. B. Angew. Chem., Int. Ed. 2005;44:3275–3279. doi: 10.1002/anie.200462883. - DOI
    2. Chanda A. Fokin V. V. Chem. Rev. 2009;109:725–748. doi: 10.1021/cr800448q. - DOI - PMC - PubMed
    1. Xu H. Gao J. Jiang D. Nat. Chem. 2015;7:905. doi: 10.1038/nchem.2352. - DOI - PubMed
    2. Das S. Heasman P. Ben T. Qiu S. Chem. Rev. 2016;117:1515–1563. doi: 10.1021/acs.chemrev.6b00439. - DOI - PubMed
    3. Wang C. A. Nie K. Song G. D. Li Y. W. Han Y. F. RSC Adv. 2019;9:8239–8245. doi: 10.1039/C9RA00460B. - DOI
    4. Dong Y. Jv J. J. Li Y. Li W. H. Chen Y. Q. Sun Q. Ma J. P. Dong Y. B. RSC Adv. 2019;9:20266–20272. doi: 10.1039/C9RA03679B. - DOI
    1. Hartwig J. F., Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books, Sausalito, 2010, pp. 33–41
    2. Guan Z. Li B. Hai G. Yang X. Li T. Tan B. RSC Adv. 2014;4:36437–36443. doi: 10.1039/C4RA06551D. - DOI