Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 6;8(43):24444-24457.
doi: 10.1039/c8ra05186k. eCollection 2018 Jul 2.

Pyrrolidine and oxazolidine ring transformations in proline and serine derivatives of α-hydroxyphosphonates induced by deoxyfluorinating reagents

Affiliations

Pyrrolidine and oxazolidine ring transformations in proline and serine derivatives of α-hydroxyphosphonates induced by deoxyfluorinating reagents

Patrycja Kaczmarek et al. RSC Adv. .

Abstract

Transformations of α-hydroxyphosphonates derived from proline or serine by treatment with different deoxyfluorinating reagents (DAST, Deoxofluor, PyFluor) are reported. Depending on the applied reagent, as well as the protecting group used (N-Cbz, N-Boc, N-Bn) different types of products are observed. The reaction of N-Cbz or N-Boc prolinols with DAST or Deoxofluor due to aziridinium intermediate participation gave fluorinated amino phosphonates such as piperidine and pyrrolidine derivatives and/or oxazolidine-2-ones. Similarly, the analogous reaction of N-Cbz or N-Boc protected serinol yielded oxazolidine-2-ones or its fluorinated analogues. As the second type of product formed by DAST-induced reaction of serine derivatives, aziridines were obtained. Only in the case of deoxyfluorination of N-benzyl prolinols were both diastereoisomers of β-fluoropiperidine-α-phosphonates formed, while the reaction of protected N-benzyl serinols gave fluorinated oxazolidines. Moreover, application of PyFluor gave sulfonate derivatives.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Deoxyfluorination of prolinol with DAST.
Scheme 2
Scheme 2. Structures of starting α-hydroxyphosphonates proline derivatives 1–3a,b.
Scheme 3
Scheme 3. Reaction of 1–2a,b with DAST (Table 1) (4 43% and 6a,b 45%; 5 38% and 7a,b 53%); or DeoxoFluor (CH2Cl2, RT, 24 h)(4 38% and 6a,b 43%; 5 30% and 7a,b 48%); and deprotection of 5 (8 73%); [configurations of stereogenic centres in the text].
Scheme 4
Scheme 4. The slightly twisted boat conformation of 4 with observed correlations and values of coupling constants.
Scheme 5
Scheme 5. Reaction of 1–2a,b with PyFluor (PyFluor, DBU, MePh, RT, 5d; 11a,b 78%, 12a,b 74%).
Scheme 6
Scheme 6. The conformations of 13a and 13b with observed 19F–1H NOEs correlations and some values of coupling constants.
Scheme 7
Scheme 7. Reaction of 15–16a with DAST (i) or DeoxoFluor (ii) from 15a: DAST: 17 32% and 18a 17%; from 16a (Table 3), and preparation of 20 ((i) Ac2O, K2CO3, AcOEt, 20 82%).
Scheme 8
Scheme 8. The mechanism of DAST-induced transformation of 16a leading to 21 or 22a.
Scheme 9
Scheme 9. Reaction of 15–16a with PyFluor. (i) PyFluor, DBU, MePh, RT, 5d; 23a 60%, 24a (47%).
Scheme 10
Scheme 10. Reaction of 25a,b with DAST or PyFluor. (i) DAST, RT 0.5 h (26a 58%); (ii) PyFluor, DBU, MePh, RT, 5d; 26a (37%).

Similar articles

Cited by

References

    1. Aminophosphonic and Aminophosphinic Acids, ed. V. P. Kukhar and H. R. Hudson, John Wiley & Sons Ltd, Chichester, 2000; For some review see
    2. Kafarski P. Lejczak B. Curr. Med. Chem.: Anti-Cancer Agents. 2001;1:301–312. doi: 10.2174/1568011013354543. - DOI - PubMed
    3. Grembecka J. Kafarski P. Mini-Rev. Med. Chem. 2001;1:133–144. doi: 10.2174/1389557013406990. - DOI - PubMed
    4. Ordóñez M. Rojas-Cabrera H. Cativiela C. Tetrahedron. 2009;65:17–49. doi: 10.1016/j.tet.2008.09.083. - DOI - PMC - PubMed
    5. Van der Jeught S. Stevens Ch. S. Chem. Rev. 2009;109:2672–2702. doi: 10.1021/cr800315j. - DOI - PubMed
    6. Orsini F. Sello G. Sisti M. Curr. Med. Chem. 2010;17:264–289. doi: 10.2174/092986710790149729. - DOI - PubMed
    7. Naydenova E. D. Todorov P. T. Troev K. D. Amino Acids. 2010;38:23–30. doi: 10.1007/s00726-009-0254-7. - DOI - PubMed
    8. Ordóñez M. Viveros-Ceballos J. L. Cativiela C. Sayago F. J. Tetrahedron. 2015;71:1745–1784. doi: 10.1016/j.tet.2015.01.029. - DOI
    1. Horsman G. P. Zechel D. L. Chem. Rev. 2017;117:5704–5783. doi: 10.1021/acs.chemrev.6b00536. - DOI - PubMed
    1. Boduszek B. Oleksyszyn J. Kam C.-M. Selzler J. Smith R. E. Powers J. C. J. Med. Chem. 1994;37:3969–3976. doi: 10.1021/jm00049a016. - DOI - PubMed
    2. Lambeir A. M. Borloo M. De Meester I. Belyaev A. Augustyns K. Hendriks D. Scharpé S. Haemers A. Biochim. Biophys. Acta. 1996;1290:76–82. doi: 10.1016/0304-4165(96)00012-8. - DOI - PubMed
    1. Surh Y. Spencer R. P. Spitznagle L. A. Hosain F. Lejczak B. J. Nucl. Med. 1986;27:847–849. - PubMed
    1. Katritzky A. R. Cui X.-L. Yang B. Steel P. J. J. Org. Chem. 1999;64:1979–1985. doi: 10.1021/jo9821426. - DOI - PubMed
    2. Dinér P. Amedjkouh M. Org. Biomol. Chem. 2006;4:2091–2096. doi: 10.1039/B605091C. - DOI - PubMed
    3. Tao Q. Tang G. Lin K. Zhao Y.-F. Chirality. 2008;20:833–838. doi: 10.1002/chir.20552. - DOI - PubMed
    4. Hirata S. Kuriyama M. Onomura O. Tetrahedron. 2011;67:9411–9416. doi: 10.1016/j.tet.2011.09.080. - DOI
    5. Ma T. Fu X. Kee C. W. Zong L. Pan Y. Huang K.-W. Tan C.-H. J. Am. Chem. Soc. 2011;133:2828–2831. doi: 10.1021/ja1098353. - DOI - PubMed
    6. Wuggenig F. Schweifer A. Mereiter K. Hammerschmidt F. Eur. J. Org. Chem. 2011:1870–1879. doi: 10.1002/ejoc.201001501. - DOI
    7. Kaboudin B. Kato J.-Y. Aoyama H. Yokomatsu T. Tetrahedron: Asymmetry. 2013;24:1562–1566. doi: 10.1016/j.tetasy.2013.10.013. - DOI
    8. Kudzin M. H. Kudzin Z. H. Drabowicz J. ARKIVOC. 2011;vi:227–269.