Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 25;8(28):15641-15651.
doi: 10.1039/c8ra02481b. eCollection 2018 Apr 23.

Diastereoselective construction of 4-indole substituted chromans bearing a ketal motif through a three-component Friedel-Crafts alkylation/ketalization sequence

Affiliations

Diastereoselective construction of 4-indole substituted chromans bearing a ketal motif through a three-component Friedel-Crafts alkylation/ketalization sequence

Jiao-Mei Guo et al. RSC Adv. .

Abstract

The first TfOH-catalyzed three-component Friedel-Crafts alkylation/ketalization sequence of indoles, alcohols and ortho-hydroxychalcones was developed to afford a wide range of 4-indole substituted chromans bearing a ketal motif in 77-99% yields. Notably, only a simple filtration was needed to purify them. By altering methanol to CHCl3, 2,4-bisindole substituted chroman with the same indole substituent at the C2 and C4 positions was afforded. Moreover, 2,4-bisindole substituted chromans with different indole substituents could be obtained by treatment of 4-indole monosubstituted chromans with another indole molecule.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Selected biologically active compounds containing a chroman motif.
Scheme 1
Scheme 1. Our synthetic design for the construction of 4-indole substituted chromans bearing a ketal motif.
Scheme 2
Scheme 2. Synthesis of 2,4-bisindole substituted chroman 4 with the same indole substituents.
Scheme 3
Scheme 3. Assembly of chromans with two different indole substituents.
Scheme 4
Scheme 4. Gram-scale preparation of 3n.
Scheme 5
Scheme 5. Chemical conversions of 3n and 3v.
Scheme 6
Scheme 6. Plausible reaction mechanism.

Similar articles

Cited by

References

    1. For selected reviews:

    2. Touré B. B. Hall D. G. Chem. Rev. 2009;109:4439. doi: 10.1021/cr800296p. - DOI - PubMed
    3. Sunderhaus J. D. Martin S. F. Chem.–Eur. J. 2009;15:1300. doi: 10.1002/chem.200802140. - DOI - PMC - PubMed
    4. Jiang B. Rajale T. Wever W. Tu S.-J. Li G.-G. Chem.–Asian J. 2010;5:2318. doi: 10.1002/asia.201000310. - DOI - PubMed
    5. Wu J. Shi F. Gong L.-Z. Acc. Chem. Res. 2011;44:1156. doi: 10.1021/ar2000343. - DOI - PubMed
    6. Cioc R. C. Ruijter E. Orru R. V. A. Green Chem. 2014;16:1958. doi: 10.1039/C4GC00013G. - DOI
    7. Hassan S. Müller T. J. J. Adv. Synth. Catal. 2015;357:617. doi: 10.1002/adsc.201400904. - DOI
    1. For selected reviews:

    2. Pratap R. Ram V. J. Chem. Rev. 2014;114:10476. doi: 10.1021/cr500075s. - DOI - PubMed
    3. For selected examples:

    4. Hiessböck R. Wolf C. Richter E. Hitzler M. Chiba P. Kratzel M. Ecker G. J. Med. Chem. 1999;42:1921. doi: 10.1021/jm980517+. - DOI - PubMed
    5. Nicolaou K. C. Pfefferkorn J. A. Roecker A. J. Cao C.-Q. Barluenga S. Mitchell H. J. J. Am. Chem. Soc. 2000;122:9939. doi: 10.1021/ja002033k. - DOI
    6. Trost B. M. Shen H.-C. Surivet J.-P. J. Am. Chem. Soc. 2004;126:12565. doi: 10.1021/ja048084p. - DOI - PubMed
    7. Kumar S. Deshpande S. Chandra V. Kitchlu S. Dwivedi A. Nayak V. L. Konwar R. Prabhakar Y. S. Sahu D. P. Bioorg. Med. Chem. 2009;17:6832. doi: 10.1016/j.bmc.2009.08.034. - DOI - PubMed
    8. Ketcham J. M. Volchkov I. Chen T.-Y. Blumberg P. M. Kedei N. Lewin N. E. Krische M. J. J. Am. Chem. Soc. 2016;138:13415. doi: 10.1021/jacs.6b08695. - DOI - PMC - PubMed
    9. Kumar M. Chauhan P. Valkonen A. Rissanen K. Enders D. Org. Lett. 2017;19:3025. doi: 10.1021/acs.orglett.7b01322. - DOI - PubMed
    1. For selected reviews:

    2. Saxton J. E. Nat. Prod. Rep. 1997;14:559. doi: 10.1039/NP9971400559. - DOI
    3. Somei M. Yamada F. Nat. Prod. Rep. 2004;21:278. doi: 10.1039/B212257J. - DOI - PubMed
    4. Kawasaki T. Higuchi K. Nat. Prod. Rep. 2005;22:761. doi: 10.1039/B502162F. - DOI - PubMed
    5. O'Connor S. E. Maresh J. J. Nat. Prod. Rep. 2006;23:532. doi: 10.1039/B512615K. - DOI - PubMed
    6. Humphrey G. R. Kuethe J. T. Chem. Rev. 2006;106:2875. doi: 10.1021/cr0505270. - DOI - PubMed
    7. Higuchi K. Kawasaki T. Nat. Prod. Rep. 2007;24:843. doi: 10.1039/B516351J. - DOI - PubMed
    1. Tian F. Xiao C. Cheng H.-G. Wu W. Ding K.-R. Xiao W.-J. Chem.–Asian J. 2012;7:493. doi: 10.1002/asia.201200202. - DOI - PubMed
    1. Wang S.-Y. Ji S.-J. Synlett. 2007:2222.
    2. Wang S.-Y. Ji S.-J. Synth. Commun. 2008;38:465. doi: 10.1080/00397910701578172. - DOI
    3. Li H.-R. Li W.-J. Liu W.-P. He Z.-H. Li Z.-P. Angew. Chem., Int. Ed. 2011;50:2975. doi: 10.1002/anie.201006779. - DOI - PubMed