Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 24;8(28):15444-15447.
doi: 10.1039/c8ra02009d. eCollection 2018 Apr 23.

A C1-symmetric N-heterocyclic carbene catalysed oxidative spiroannulation of isatin-derived enals: highly enantioselective synthesis of spirooxindole δ-lactones

Affiliations

A C1-symmetric N-heterocyclic carbene catalysed oxidative spiroannulation of isatin-derived enals: highly enantioselective synthesis of spirooxindole δ-lactones

Jun-Bing Lin et al. RSC Adv. .

Abstract

A C1-symmetric N-heterocyclic carbene (NHC)-catalysed activation of isatin-derived enals under oxidative conditions was achieved. The in situ generated α,β-unsaturated acyl azolium species was efficiently trapped by 1,3-dicarbonyl compounds via a Michael addition/spiroannualtion cascade, delivering a series of synthetically important spirooxindole δ-lactones with up to 96% enantioselectivity.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. (a) Examples of spirooxindole-containing natural products. (b) Assembly of spirooxindole δ-lactone scaffolds via C1-symmetric NHC-catalysed spiroannulation (this work).
Scheme 1
Scheme 1. Proposed catalytic cycle.

Similar articles

Cited by

References

    1. For selected reviews, see:

    2. Marti C. Carreira E. M. Eur. J. Org. Chem. 2003:2209. doi: 10.1002/ejoc.200300050. - DOI
    3. Galliford C. V. Scheidt K. A. Angew. Chem., Int. Ed. 2007;46:8748. doi: 10.1002/anie.200701342. - DOI - PubMed
    4. Dalpozzo R. Bartoli G. Bencivenni G. Chem. Soc. Rev. 2012;41:7247. doi: 10.1039/C2CS35100E. - DOI - PubMed
    5. Ball-Jones N. R. Badillo J. J. Franz A. K. Org. Biomol. Chem. 2012;10:5165. doi: 10.1039/C2OB25184A. - DOI - PubMed
    1. For selected examples, see:

    2. Chen X. H. Wei Q. Luo S. W. Xiao H. Gong L. Z. J. Am. Chem. Soc. 2009;131:13819. doi: 10.1021/ja905302f. - DOI - PubMed
    3. Antonchick A. P. Gerding-Reimers C. Catarinella M. Schürmann M. Preut H. Ziegler S. Rauh D. Waldmann H. Nat. Chem. 2010;2:735. doi: 10.1038/nchem.730. - DOI - PubMed
    4. Tan B. Candeias N. R. Barbas III C. F. Nat. Chem. 2011;3:473. doi: 10.1038/nchem.1039. - DOI - PubMed
    5. Liu Y. Nappi M. Arceo E. Vera S. Melchiorre P. J. Am. Chem. Soc. 2011;133:15212. doi: 10.1021/ja206517s. - DOI - PubMed
    6. Zhan G. Shi M. L. He Q. Lin W. J. Ouyang Q. Du W. Chen Y. C. Angew. Chem., Int. Ed. 2016;55:2147. doi: 10.1002/anie.201510825. - DOI - PubMed
    7. Han X. Chan W. L. Yao W. Wang Y. Lu Y. Angew. Chem., Int. Ed. 2016;55:6492. doi: 10.1002/anie.201600453. - DOI - PubMed
    1. Chen Y. G. Wu J. C. Chen G. Y. Han C. R. Song X. P. Chem. Biodiversity. 2011;8:1958. doi: 10.1002/cbdv.201000325. - DOI - PubMed
    2. Ma S. S. Mei W. L. Guo Z. K. Liu S. B. Zhao Y. X. Yang D. L. Zeng Y. B. Jiang B. Dai H. F. Org. Lett. 2013;15:1492. doi: 10.1021/ol4002619. - DOI - PubMed
    3. Huang J. Z. Zhang C. L. Zhu Y. F. Li L. L. Chen D. F. Han Z. Y. Gong L. Z. Chem.–Eur. J. 2015;21:8389. doi: 10.1002/chem.201500349. - DOI - PubMed
    1. Du D. Hu Z. Y. Jin J. L. Lu Y. Y. Tang W. F. Wang B. Lu T. Org. Lett. 2012;14:1274. doi: 10.1021/ol300148f. - DOI - PubMed
    2. Zhao S. Lin J. B. Zhao Y. Y. Liang Y. M. Xu P. F. Org. Lett. 2014;16:1802. doi: 10.1021/ol500547e. - DOI - PubMed
    1. For selected reviews, see:

    2. Enders D. Niemeier O. Henseler A. Chem. Rev. 2007;107:5606. doi: 10.1021/cr068372z. - DOI - PubMed
    3. Nair V. Vellalath S. Babu B. P. Chem. Soc. Rev. 2008;37:2691. doi: 10.1039/B719083M. - DOI - PubMed
    4. Grossmann A. Enders D. Angew. Chem., Int. Ed. 2012;51:314. doi: 10.1002/anie.201105415. - DOI - PubMed
    5. Izquierdo J. Hutson G. E. Cohen D. T. Scheidt K. A. Angew. Chem., Int. Ed. 2012;51:11686. doi: 10.1002/anie.201203704. - DOI - PMC - PubMed
    6. Bugaut X. Glorius F. Chem. Soc. Rev. 2012;41:3511. doi: 10.1039/C2CS15333E. - DOI - PubMed
    7. Ryan S. J. Candish L. Lupton D. W. Chem. Soc. Rev. 2013;42:4906. doi: 10.1039/C3CS35522E. - DOI - PubMed
    8. Hopkinson M. N. Richter C. Schedler M. Glorius F. Nature. 2014;510:485. doi: 10.1038/nature13384. - DOI - PubMed
    9. Mahatthananchai J. Bode J. W. Acc. Chem. Res. 2014;47:696. doi: 10.1021/ar400239v. - DOI - PubMed
    10. Flanigan D. M. Romanov-Michailidis F. White N. A. Rovis T. Chem. Rev. 2015;115:9307. doi: 10.1021/acs.chemrev.5b00060. - DOI - PMC - PubMed
    11. Wang Y. Wei D. Zhang W. ChemCatChem. 2018;10:338. doi: 10.1002/cctc.201701119. - DOI
    12. Chen X. Y. Liu Q. Chauhan P. Enders D. Angew. Chem., Int. Ed. 2018;57:3862. doi: 10.1002/anie.201709684. - DOI - PubMed