Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 23;8(34):19144-19151.
doi: 10.1039/c8ra02879f. eCollection 2018 May 22.

Oxidative functionalization of aliphatic and aromatic amino acid derivatives with H2O2 catalyzed by a nonheme imine based iron complex

Affiliations

Oxidative functionalization of aliphatic and aromatic amino acid derivatives with H2O2 catalyzed by a nonheme imine based iron complex

Barbara Ticconi et al. RSC Adv. .

Abstract

The oxidation of a series of N-acetyl amino acid methyl esters with H2O2 catalyzed by a very simple iminopyridine iron(ii) complex 1 easily obtainable in situ by self-assembly of 2-picolylaldehyde, 2-picolylamine, and Fe(OTf)2 was investigated. Oxidation of protected aliphatic amino acids occurs at the α-C-H bond exclusively (N-AcAlaOMe) or in competition with the side-chain functionalization (N-AcValOMe and N-AcLeuOMe). N-AcProOMe is smoothly and cleanly oxidized with high regioselectivity affording exclusively C-5 oxidation products. Remarkably, complex 1 is also able to catalyze the oxidation of the aromatic N-AcPheOMe. A marked preference for the aromatic ring hydroxylation over Cα-H and benzylic C-H oxidation was observed, leading to the clean formation of tyrosine and its phenolic isomers.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Oxidation of aliphatic and aromatic hydrocarbons with H2O2 promoted by the nonheme imine-based iron complex 1.
Fig. 2
Fig. 2. N-acetyl amino acids methyl esters (2–8) investigated in this work.
Scheme 1
Scheme 1. Formation of methyl piruvate in the oxidation of N-AcAlaOMe (2) with the 1/H2O2 system.
Scheme 2
Scheme 2. Formation of Cα–H and side-chain oxidation products in the reaction of N-AcLeuOMe (4) with the 1/H2O2 system.
Scheme 3
Scheme 3. Formation of N-formyl-N-acetylkynurenine methyl ester in the oxidation of N-AcTrpOMe (6) with the 1/H2O2 system.
Fig. 3
Fig. 3. Oxidation products and yields in the competitive experiments of N-AcPheOMe (7) with N-AcValOMe (3), N-AcLeuOMe (4) and N-AcProOMe (5).

Similar articles

Cited by

References

    1. Garrison W. M. Chem. Rev. 1987;87:381–398. doi: 10.1021/cr00078a006. - DOI
    2. Stadtman E. R. Annu. Rev. Biochem. 1993;62:797–821. doi: 10.1146/annurev.bi.62.070193.004053. - DOI - PubMed
    3. Easton C. J. Chem. Rev. 1997;97:53–82. doi: 10.1021/cr9402844. - DOI - PubMed
    1. Schepartz A. Cuenoud B. J. Am. Chem. Soc. 1990;112:3247–3249. doi: 10.1021/ja00164a075. - DOI
    2. Hoyer D. Cho H. Schultz P. G. J. Am. Chem. Soc. 1990;112:3249–3250. doi: 10.1021/ja00164a076. - DOI
    3. Zhong M. Lin L. Kallenbach N. R. Proc. Natl. Acad. Sci. U. S. A. 1995;92:2111–2115. doi: 10.1073/pnas.92.6.2111. - DOI - PMC - PubMed
    4. Gallagher J. Zelenko O. Walts A. D. Sigman D. S. Biochemistry. 1998;37:2096–2104. doi: 10.1021/bi971565j. - DOI - PubMed
    5. Xu G. Chance M. R. Chem. Rev. 2007;107:3514–3543. doi: 10.1021/cr0682047. - DOI - PubMed
    6. Maleknia S. D. Downard K. M. Chem. Soc. Rev. 2014;43:3244–3258. doi: 10.1039/C3CS60432B. - DOI - PubMed
    1. Reddy B. V. S. Reddy L. R. Corey E. J. Org. Lett. 2006;8:3391–3394. doi: 10.1021/ol061389j. - DOI - PubMed
    2. Annese C. Fanizza I. Calvano C. D. D'Accolti L. Fusco C. Curci R. Williard P. G. Org. Lett. 2011;13:5096–5099. doi: 10.1021/ol201971v. - DOI - PMC - PubMed
    3. Noisier A. F. M. Brimble M. A. Chem. Rev. 2014;114:8775–8806. doi: 10.1021/cr500200x. - DOI - PubMed
    4. Gong W. Zhang G. Liu T. Giri R. Yu J.-Q. J. Am. Chem. Soc. 2014;136:16940–16946. doi: 10.1021/ja510233h. - DOI - PMC - PubMed
    5. Osberger T. J. Rogness D. C. Kohrt J. T. Stepan A. F. White M. C. Nature. 2016;537:214–219. doi: 10.1038/nature18941. - DOI - PMC - PubMed
    1. Easton C. J. Pure Appl. Chem. 1997;69:489–494. doi: 10.1351/pac199769030489. - DOI
    1. Berlett B. S. Stadtman E. R. J. Biol. Chem. 1997;272:20313–20316. doi: 10.1074/jbc.272.33.20313. - DOI - PubMed
    2. Hawkins C. L. Davies M. J. J. Chem. Soc., Perkin Trans. 2. 1998:2617–2622. doi: 10.1039/A806666C. - DOI
    3. Saladino R. Mezzetti M. Mincione E. Torrini I. Paglialunga Paradisi M. Mastropietro G. J. Org. Chem. 1999;64:8468–8474. doi: 10.1021/jo990185w. - DOI
    4. Goshe M. B. Chen Y. H. Anderson V. E. Biochemistry. 2000;39:1761–1770. doi: 10.1021/bi991569j. - DOI - PubMed
    5. Hawkins C. L. Davies M. J. Biochim. Biophys. Acta. 2001;1504:196–219. doi: 10.1016/S0005-2728(00)00252-8. - DOI - PubMed
    6. Nukuna B. N. Goshe M. B. Anderson V. E. J. Am. Chem. Soc. 2001;123:1208–1214. doi: 10.1021/ja003342d. - DOI - PubMed
    7. Dangel B. D. Johnson J. A. Sames D. J. Am. Chem. Soc. 2001;123:8149–8150. doi: 10.1021/ja016280f. - DOI - PubMed
    8. Croft A. K. Easton C. J. Radom L. J. Am. Chem. Soc. 2003;125:4119–4124. doi: 10.1021/ja029674v. - DOI - PubMed
    9. Davies M. J. Biochim. Biophys. Acta. 2005;1703:93–109. doi: 10.1016/j.bbapap.2004.08.007. - DOI - PubMed
    10. Rella M. R. Williard P. G. J. Org. Chem. 2007;72:525–531. doi: 10.1021/jo061910n. - DOI - PMC - PubMed
    11. Watts Z. I. Easton C. J. J. Am. Chem. Soc. 2009;131:11323–11325. doi: 10.1021/ja9027583. - DOI - PubMed
    12. Raffy Q. Buisson D.-A. Cintrat J.-C. Rousseau B. Pin S. Renault J. P. Angew. Chem., Int. Ed. 2012;51:2960–2963. doi: 10.1002/anie.201108856. - DOI - PubMed
    13. Morgan P. E. Pattison D. I. Davies M. J. Free Radical Biol. Med. 2012;52:328–339. doi: 10.1016/j.freeradbiomed.2011.10.448. - DOI - PubMed