Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 19;8(40):22437-22446.
doi: 10.1039/c8ra04157a.

Synthesis of TiO2-ZnS nanocomposites via sacrificial template sulfidation and their ethanol gas-sensing performance

Affiliations

Synthesis of TiO2-ZnS nanocomposites via sacrificial template sulfidation and their ethanol gas-sensing performance

Yuan-Chang Liang et al. RSC Adv. .

Abstract

TiO2-ZnS core-shell composite nanorods were synthesized by using ZnO as a sacrificial shell layer in a hydrothermal reaction. ZnO thin films of different thicknesses were sputter-deposited onto the surfaces of TiO2 nanorods as templates for hydrothermally synthesizing TiO2-ZnS core-shell nanorods. Structural analysis revealed that crystalline TiO2-ZnS composite nanorods were formed without any residual ZnO phase after hydrothermal sulfidation in the composite nanorods. The thickness of the ZnO sacrificial shell layer affected the surface morphology and sulfur-related surface defect density in hydrothermally grown ZnS crystallites of TiO2-ZnS composite nanorods. Due to the distinctive core-shell heterostructure and the heterojunction between the TiO2 core and the ZnS shell, TiO2-ZnS core-shell nanorods exhibited ethanol gas-sensing performance superior to that of pristine TiO2 nanorods. An optimal ZnO sacrificial shell layer thickness of approximately 60 nm was found to enable the synthesis of TiO2-ZnS composite nanorods with satisfactory gas-sensing performance through sulfidation. The results demonstrated that hydrothermally derived TiO2-ZnS core-shell composite nanorods with a sputter-deposited ZnO sacrificial shell layer are promising for applications in gas sensors.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. SEM images of various nanorods: (a) TiO2, (b) TiO2–ZnS-1, (c) TiO2–ZnS-2, and (d) TiO2–ZnS-3.
Fig. 2
Fig. 2. XRD patterns of various nanorods: (a) TiO2, (b) TiO2–ZnS-1, (c) TiO2–ZnS-2, and (d) TiO2–ZnS-3.
Fig. 3
Fig. 3. TEM analyses of the TiO2–ZnS-1 nanorod: (a) low-magnification TEM image, (b) and (c) HRTEM images taken from various regions of the nanorod (d) EDS line-scanning profiles across the composite nanorod.
Fig. 4
Fig. 4. TEM analyses of the TiO2–ZnS-2 nanorod: (a) low-magnification TEM of the TiO2–ZnS-2 nanorod, (b) and (c) HRTEM images taken from various regions of the nanorod, (d) SAED pattern of several TiO2–ZnS-2 nanorods, (e) EDS spectrum of the nanorod.
Fig. 5
Fig. 5. TEM analyses of the TiO2–ZnS-3 nanorod: (a) low-magnification TEM of the TiO2–ZnS-3 nanorod, (b) and (c) HRTEM images taken from various regions of the TiO2–ZnS-3 nanorod, (d) SAED patterns of several TiO2–ZnS-3 nanorods, and (e) EDS spectrum of the TiO2–ZnS-3 nanorod.
Fig. 6
Fig. 6. High-resolution XPS spectra of various TiO2–ZnS nanorods: Zn2p of (a) TiO2–ZnS-1, (b) TiO2–ZnS-2, (c) TiO2–ZnS-3. S2p of (d) TiO2–ZnS-1, (e) TiO2–ZnS-2, and (f) TiO2–ZnS-3.
Fig. 7
Fig. 7. Temperature-dependent gas-sensing response of the TiO2–ZnS-3 nanorods exposed to 250 ppm ethanol vapor.
Fig. 8
Fig. 8. Dynamic gas-sensing response–recovery curves of the various sensors exposed to different concentrations of ethanol vapor (50–1000 ppm): (a) TiO2–ZnS-1, (b) TiO2–ZnS-2, and (c) TiO2–ZnS-3. (d) Gas-sensing response values comparison of the sensors based on the TiO2, TiO2–ZnS-1, TiO2–ZnS-2, and TiO2–ZnS-3 toward to 50–1000 ppm ethanol vapor. (e) Cycling tests of the TiO2–ZnS-3 sensor on exposure to 250 ppm ethanol vapor. (f) Dynamic gas-sensing response–recovery curve of the TiO2–ZnS-3 sensor exposed to 5 ppm ethanol vapor.
Fig. 9
Fig. 9. Schematic diagrams of the gas-sensing mechanisms of TiO2–ZnS composite nanorods.
Fig. 10
Fig. 10. (a) SEM image of TiO2 nanorods with the 80 nm-thick ZnO sacrificial layer after sulfidation. (b) Dynamic gas-sensing response–recovery curves of TiO2–ZnS nanorods. (c) Gas-sensing responses of TiO2–ZnS nanorods made from 80 nm-thick ZnO sacrificed layer after sulfidation.

Similar articles

Cited by

References

    1. Liang Y. C. Xu N. C. Wang C. C. Wei D. H. Materials. 2017;10:778–790. doi: 10.3390/ma10070778. - DOI - PMC - PubMed
    1. Li Y. Yang H. Tian J. Hu X. Cui H. RSC Adv. 2017;7:11503–11509. doi: 10.1039/C7RA00011A. - DOI
    1. Zhou W. Liu H. Boughton R. I. Du G. Lin J. Wang J. Liu D. J. Mater. Chem. 2010;20:5993–6008. doi: 10.1039/B927224K. - DOI
    1. Lee W. H. Lai C. W. Hamid S. B. A. Materials. 2015;8:2139–2153. doi: 10.3390/ma8052139. - DOI - PMC - PubMed
    1. Li J. Wang X. Shao Y. Lu X. Chen B. Materials. 2014;7:6865–6878. doi: 10.3390/ma7096865. - DOI - PMC - PubMed