Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 20;8(40):22530-22535.
doi: 10.1039/c8ra02146e. eCollection 2018 Jun 19.

A fluorescent calixarene-based dimeric capsule constructed via a MII-terpyridine interaction: cage structure, inclusion properties and drug release

Affiliations

A fluorescent calixarene-based dimeric capsule constructed via a MII-terpyridine interaction: cage structure, inclusion properties and drug release

Jun-Fang Wang et al. RSC Adv. .

Abstract

Two analogues of capsule-like fluorescent cages have been constructed by dimerization of terpyridine-containing calixarene derivatives utilizing a MII-terpyridine (M = Zn and Cd) interaction. 1H NMR spectral studies show that the self-assembled molecular capsules Zn4L12 and Cd4L12 have a highly symmetrical D 4h-structure. The encapsulation of the anticancer drug mercaptopurine in their cavities has been documented by NMR, ESI-TOF-MS, fluorescence switching, and molecular simulation, indicating that strong S-π and π-π interactions between drug and cage are of importance for the host-guest binding. The nanoscale cages exhibit excellent behaviors to control the release of mercaptopurine in phosphate buffered saline solution (pH = 7.4). These results further highlight the potential of self-assembled Zn4L12 cages for drug-carrier applications.

PubMed Disclaimer

Conflict of interest statement

We have no competing interests.

Figures

Scheme 1
Scheme 1. The synthesis of calix[4]arene based nanocapsules.
Fig. 1
Fig. 1. 1H NMR spectra (400 MHz, 298 K) of (a) ligand L1 (CDCl3) and (b) Cd4(L1)2(PF6)8 MOC (CD3CN).
Fig. 2
Fig. 2. 1H DOSY spectrum (400 MHz, CD3CN, 298 K) of Cd4(L1)2(PF6)8 MOC.
Fig. 3
Fig. 3. ESI-MS spectrum of Cd4(L1)2(PF6)8 MOC.
Fig. 4
Fig. 4. The optimized structures of Zn4L12 (a) and 4(mercaptopurine)@Zn4L12 (b). The interactions are colored in dotted lines: coordination bond in gray, S–π interaction in green, S–H–π interaction in yellow and π–π interaction in pink. All hydrogens are omitted for clarity.
Fig. 5
Fig. 5. (a) UV-Vis and (b) fluorescent titrations of Zn4L12 (1.23 × 10−6 mol L−1) with mercaptopurine in MeCN and H2O (2 : 1 v/v). From a to u: 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5 equiv.; from a to h: 0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 15.0, 19.0, 23.0, 28.0, 38.0, 48.0, 58.0 equiv.
Fig. 6
Fig. 6. The release of mercaptopurine from control (red circle) and mercaptopurine@Zn4L12 (black square).

References

    1. Cook T. R. Stang P. J. Chem. Rev. 2015;115:7001–7045. doi: 10.1021/cr5005666. - DOI - PubMed
    2. Han M. Engelhard D. M. Clever G. H. Chem. Soc. Rev. 2014;43:1848–1860. doi: 10.1039/C3CS60473J. - DOI - PubMed
    3. Leenders S. H. A. M. Gramage-Doria R. de Bruin B. Reek J. N. H. Chem. Soc. Rev. 2015;44:433–448. doi: 10.1039/C4CS00192C. - DOI - PubMed
    4. Chakrabarty R. Mukherjee P. S. Stang P. J. Chem. Rev. 2011;111:6810–6918. doi: 10.1021/cr200077m. - DOI - PMC - PubMed
    5. Cook T. R. Vajpayee V. Lee M. H. Stang P. J. Chi K.-W. Acc. Chem. Res. 2013;46:2464–2474. doi: 10.1021/ar400010v. - DOI - PMC - PubMed
    1. Schmidt A. Molano V. Hollering M. Pöthig A. Casini A. Kühn F. E. Chem.–Eur. J. 2016;22:2253–2256. doi: 10.1002/chem.201504930. - DOI - PubMed
    2. Cullen W. Turega S. Hunter C. A. Ward M. D. Chem. Sci. 2015;6:625–631. doi: 10.1039/C4SC02090A. - DOI - PMC - PubMed
    3. Mishra A. Chang Lee S. Kaushik N. Cook T. R. Choi E. H. Kumar Kaushik N. Stang P. J. Chi K.-W. Chem.–Eur. J. 2014;20:14410–14420. doi: 10.1002/chem.201403372. - DOI - PMC - PubMed
    4. Mishra A. Jeong Y. J. Jo J.-H. Kang S. C. Lah M. S. Chi K.-W. ChemBioChem. 2014;15:695–700. doi: 10.1002/cbic.201300688. - DOI - PubMed
    5. Lewis J. E. M. Gavey E. L. Cameron S. A. Crowley J. D. Chem. Sci. 2012;3:778–784. doi: 10.1039/C2SC00899H. - DOI
    6. Ahmad H. Ghosh D. Thomas J. A. Chem. Commun. 2014;50:3859–3861. doi: 10.1039/C4CC00997E. - DOI - PubMed
    7. Pitto-Barry A. Barry N. P. E. Zava O. Deschenaux R. Dyson P. J. Therrien B. Chem.–Eur. J. 2011;17:1966–1971. doi: 10.1002/chem.201002634. - DOI - PubMed
    8. Schmitt F. Freudenreich J. Barry N. P. E. Juillerat-Jeanneret L. Süss-Fink G. Therrien B. J. Am. Chem. Soc. 2012;134:754–757. doi: 10.1021/ja207784t. - DOI - PubMed
    1. Therrien B. Sìss-Fink G. Govindaswamy P. Renfrew A. K. Dyson P. J. Angew. Chem. Int. Ed. 2008;47:3773–3776. doi: 10.1002/anie.200800186. - DOI - PubMed
    2. Zheng Y.-R. Suntharalingam K. Johnstone T. C. Lippard S. J. Chem. Sci. 2015;6:1189–1193. doi: 10.1039/C4SC01892C. - DOI - PMC - PubMed
    3. Samanta S. K. Moncelet D. Briken V. Isaacs L. J. Am. Chem. Soc. 2016;138:14488–14496. doi: 10.1021/jacs.6b09504. - DOI - PMC - PubMed
    4. Xu W.-Q. Fan Y.-Z. Wang H.-P. Teng J. Li Y.-H. Chen C.-X. Fenske D. Jiang J.-J. Su C.-Y. Chem.–Eur. J. 2017;23:3542–3547. doi: 10.1002/chem.201606060. - DOI - PubMed
    1. Niko Y. Arntz Y. Mely Y. Konishi G. Klymchenko A. S. Chem.–Eur. J. 2014;20:16473–16477. doi: 10.1002/chem.201405040. - DOI - PubMed
    2. Schmidt A. Hollering M. Drees M. Casini A. Kühn F. E. Dalton Trans. 2016;45:8556–8565. doi: 10.1039/C6DT00654J. - DOI - PubMed
    3. Wenzel M. de Almeida A. Bigaeva E. Kavanagh P. Picquet M. Le Gendre P. Bodio E. Casini A. Inorg. Chem. 2016;55:2544–2557. doi: 10.1021/acs.inorgchem.5b02910. - DOI - PubMed
    4. Crans D. C. Nordlander E. Bertrand B. de Almeida A. van der Burgt E. P. M. Picquet M. Citta A. Folda A. Rigobello M. P. Le Gendre P. Bodio E. Casini A. Eur. J. Inorg. Chem. 2014:4532–4536.
    1. Nimse S. B. Kim T. Chem. Soc. Rev. 2013;42:366–386. doi: 10.1039/C2CS35233H. - DOI - PubMed
    2. Creaven B. S. Donlon D. F. McGinley J. Coord. Chem. Rev. 2009;253:893–962. doi: 10.1016/j.ccr.2008.06.008. - DOI
    3. Yan X. Wang F. Zheng B. Huang F. Chem. Soc. Rev. 2012;41:6042–6065. doi: 10.1039/C2CS35091B. - DOI - PubMed