Efficient access to amides of the carborane carboxylic acid [1-(COOH)-CB11H11]
- PMID: 35539747
- PMCID: PMC9081092
- DOI: 10.1039/c8ra03067g
Efficient access to amides of the carborane carboxylic acid [1-(COOH)-CB11H11]
Abstract
The preparation of the carborane acid chloride [1-(COCl)-CB11H11]- from the carboxylic acid [1-(COOH)-CB11H11]- is reported. This acid chloride exhibits remarkable inertness towards moisture and can be stored under ambient conditions for several months. Reaction with amines affords secondary and tertiary carborane amides [1-(CONR1R2)-CB11H11]- in moderate to high yields under mild conditions. Two of the amide products were characterized by X-ray crystallography in addition to spectroscopic analysis. Preliminary studies show that the amides can be reduced to the corresponding amines and that the acid chloride has the potential to serve as a starting material for carborane ester formation.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures







Similar articles
-
General access to aminobenzyl-o-carboranes as a new class of carborane derivatives: entry to enantiopure carborane-amine combinations.Chemistry. 2009 Nov 9;15(44):12030-42. doi: 10.1002/chem.200901332. Chemistry. 2009. PMID: 19768711
-
Microwave-Assisted Catalytic Method for a Green Synthesis of Amides Directly from Amines and Carboxylic Acids.Molecules. 2020 Apr 11;25(8):1761. doi: 10.3390/molecules25081761. Molecules. 2020. PMID: 32290373 Free PMC article.
-
Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.Ultrason Sonochem. 2016 Mar;29:371-9. doi: 10.1016/j.ultsonch.2015.10.009. Epub 2015 Oct 22. Ultrason Sonochem. 2016. PMID: 26585017
-
Deoxygenative hydroboration of carboxamides: a versatile and selective synthetic approach to amines.Dalton Trans. 2021 Dec 7;50(47):17455-17466. doi: 10.1039/d1dt03516a. Dalton Trans. 2021. PMID: 34787155 Review.
-
Harnessing and engineering amide bond forming ligases for the synthesis of amides.Curr Opin Chem Biol. 2020 Apr;55:77-85. doi: 10.1016/j.cbpa.2019.12.004. Epub 2020 Feb 12. Curr Opin Chem Biol. 2020. PMID: 32058241 Review.
Cited by
-
Highly selective palladium-catalyzed one-pot, five-fold B-H/C-H cross coupling of monocarboranes with alkenes.Chem Sci. 2019 Mar 4;10(15):4177-4184. doi: 10.1039/c9sc00078j. eCollection 2019 Apr 21. Chem Sci. 2019. PMID: 31057746 Free PMC article.
References
-
- Grimes R. N., Carboranes, Elsevier, Amsterdam, 3rd edn, 2016
- Hosmane N. S., Boron Science: New Technologies and Applications, Taylor & Francis/CRC, Boca Raton, 2011
-
- Douvris C. Michl J. Chem. Rev. 2013;113:PR179–PR233. doi: 10.1021/cr400059k. - DOI - PubMed
- Knapp C., Weakly Coordinating Anions: Halogenated Borates and Dodecaborates in Comprehensive Inorganic Chemistry II, Elsevier, Amsterdam, 2013, vol. 1, pp. 651–679
- Grimes R. N. Dalton Trans. 2015;44:5939–5956. doi: 10.1039/C5DT00231A. - DOI - PubMed
- Poater J. Solà M. Teixidor F. Chem.–Eur. J. 2016;22:7437–7443. doi: 10.1002/chem.201600510. - DOI - PubMed
- Melichar P. Hnyk D. Fanfrlík J. Phys. Chem. Chem. Phys. 2018;20:4666–4675. doi: 10.1039/C7CP07422K. - DOI - PubMed
- Axtell J. C. Saleh L. M. A. Qian E. A. Wixtrom A. I. Spokoyny A. M. Inorg. Chem. 2018;57:2333–2350. doi: 10.1021/acs.inorgchem.7b02912. - DOI - PMC - PubMed
-
- Finze M. Sprenger J. A. P. Schaack B. B. Dalton Trans. 2010;39:2708–2716. doi: 10.1039/B922720B. - DOI - PubMed
- Spokoyny A. M. Machan C. W. Clingerman D. J. Rosen M. S. Wiester M. J. Kennedy R. D. Stern C. L. Sarjeant A. A. Mirkin C. A. Nat. Chem. 2011;3:590–596. doi: 10.1038/nchem.1088. - DOI - PubMed
- Yao Z.-J. Jin G.-X. Coord. Chem. Rev. 2013;257:2522–2535. doi: 10.1016/j.ccr.2013.02.004. - DOI
- El-Hellani A. Lavallo V. Angew. Chem., Int. Ed. 2014;53:4489–4493. doi: 10.1002/anie.201402445. - DOI - PubMed
- Asay M. J. Fisher S. P. Lee S. E. Tham F. S. Borchardt D. Lavallo V. Chem. Commun. 2015;51:5359–5362. doi: 10.1039/C4CC08267B. - DOI - PubMed
- Riley L. E. Chan A. P. Y. Taylor J. Man W. Y. Ellis D. Rosair G. M. Welch A. J. Sivaev I. B. Dalton Trans. 2016;45:1127–1137. doi: 10.1039/C5DT03417E. - DOI - PubMed
- Estrada J. Lugo C. A. McArthur S. G. Lavallo V. Chem. Commun. 2016;52:1824–1826. doi: 10.1039/C5CC08377J. - DOI - PubMed
- Chan A. L. Estrada J. Kefalidis C. E. Lavallo V. Organometallics. 2016;35:3257–3260. doi: 10.1021/acs.organomet.6b00622. - DOI
- Fisher S. P. El-Hellani A. Tham F. S. Lavallo V. Dalton Trans. 2016;45:9762–9765. doi: 10.1039/C6DT00551A. - DOI - PubMed
- Holmes J. Pask C. M. Fox M. A. Willans C. E. Chem. Commun. 2016;52:6443–6446. doi: 10.1039/C6CC01650B. - DOI - PubMed
- Zhou Y.-P. Raoufmoghaddam S. Szilvási T. Driess M. Angew. Chem., Int. Ed. 2016;55:12868–12872. doi: 10.1002/anie.201606979. - DOI - PubMed
- Šembera F. Plutnar J. Higelin A. Janoušek Z. Císařová I. Michl J. Inorg. Chem. 2016;55:3797–3806. doi: 10.1021/acs.inorgchem.5b02678. - DOI - PubMed
- Coburger P. Schulz J. Klose J. Schwarze B. Sárosi M. B. Hey-Hawkins E. Inorg. Chem. 2017;56:292–304. doi: 10.1021/acs.inorgchem.6b02173. - DOI - PubMed
- Selg C. Neumann W. Lönnecke P. Hey-Hawkins E. Zeitler K. Chem.–Eur. J. 2017;23:7932–7937. doi: 10.1002/chem.201700209. - DOI - PubMed
- Estrada J. Lavallo V. Angew. Chem., Int. Ed. 2017;56:9906–9909. doi: 10.1002/anie.201705857. - DOI - PubMed
-
- Jude H. Disteldorf H. Fischer S. Wedge T. Hawkridge A. M. Arif A. M. Hawthorne M. F. Muddiman D. C. Stang P. J. J. Am. Chem. Soc. 2005;127:1231–12139. doi: 10.1021/ja053050i. - DOI - PubMed
- Huang S.-L. Weng L.-H. Jin G.-X. Dalton Trans. 2012;41:11657–11662. doi: 10.1039/C2DT30708A. - DOI - PubMed
- Kobr L. Zhao K. Shen Y. Shoemaker R. K. Rogers C. T. Michl J. Adv. Mater. 2013;25:443–448. doi: 10.1002/adma.201203294. - DOI - PubMed
- Kennedy R. D. Krungleviciute V. Clingerman D. J. Mondloch J. E. Peng Y. Wilmer C. E. Sarjeant A. A. Snurr R. Q. Hupp J. T. Yildirim T. Farha O. K. Mirkin C. A. Chem. Mater. 2013;25:3539–3543. doi: 10.1021/cm4020942. - DOI
- Han Y.-F. Jin G.-X. Acc. Chem. Res. 2014;47:3571–3579. doi: 10.1021/ar500335a. - DOI - PubMed
- Housecroft C. E. J. Organomet. Chem. 2015;798:218–228. doi: 10.1016/j.jorganchem.2015.04.047. - DOI
- Clingerman D. J. Morris W. Mondloch J. E. Kennedy R. D. Sarjieant A. A. Stern C. Hupp J. T. Farha O. K. Mirkin C. A. Chem. Commun. 2015;51:6521–6523. doi: 10.1039/C4CC09212K. - DOI - PubMed
- Rodríguez-Hermida S. Tsang M. Y. Vignatti C. Stylianou K. C. Guillerm V. Pérez-Carvajal J. Teixidor F. Viñas C. Choquesillo-Lazarte D. Verdugo-Escamilla C. Peral I. Juanhuix J. Verdaguer A. Imaz I. Maspoch D. Giner Planas J. Angew. Chem., Int. Ed. 2016;55:16049–16053. doi: 10.1002/anie.201609295. - DOI - PubMed
- Tsang M. Y. Rodríguez-Hermida S. Stylianou K. C. Tan F. Negi D. Teixidor F. Viñas C. Choquesillo-Lazarte D. Verdugo-Escamilla C. Guerrero M. Sort J. Juanhuix J. Maspoch D. Giner Planas J. Cryst. Growth Des. 2017;17:846–857. doi: 10.1021/acs.cgd.6b01682. - DOI
-
- Sivaev I. B. Bregadze V. V. Eur. J. Inorg. Chem. 2009:1433–1450. doi: 10.1002/ejic.200900003. - DOI
- Issa F. Kassiou M. Rendina L. M. Chem. Rev. 2011;111:5701–5722. doi: 10.1021/cr2000866. - DOI - PubMed
- Scholz M. H-Hawkins E. Chem. Rev. 2011;111:7035–7062. doi: 10.1021/cr200038x. - DOI - PubMed
- Gabel D. Pure Appl. Chem. 2015;87:173–179.
- Leśnikowski Z. J. J. Med. Chem. 2016;59:7738–7758. doi: 10.1021/acs.jmedchem.5b01932. - DOI - PubMed
LinkOut - more resources
Full Text Sources