Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 19;8(40):22447-22451.
doi: 10.1039/c8ra03067g.

Efficient access to amides of the carborane carboxylic acid [1-(COOH)-CB11H11]

Affiliations

Efficient access to amides of the carborane carboxylic acid [1-(COOH)-CB11H11]

Yunjun Shen et al. RSC Adv. .

Abstract

The preparation of the carborane acid chloride [1-(COCl)-CB11H11]- from the carboxylic acid [1-(COOH)-CB11H11]- is reported. This acid chloride exhibits remarkable inertness towards moisture and can be stored under ambient conditions for several months. Reaction with amines affords secondary and tertiary carborane amides [1-(CONR1R2)-CB11H11]- in moderate to high yields under mild conditions. Two of the amide products were characterized by X-ray crystallography in addition to spectroscopic analysis. Preliminary studies show that the amides can be reduced to the corresponding amines and that the acid chloride has the potential to serve as a starting material for carborane ester formation.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. General structure of icosahedral carboranes (a), reported carborane esters and carboxamides (b–d) and outline of the present study (e).
Scheme 1
Scheme 1. Preparation of carboxylic acid chloride 1 and subsequent synthesis of carborane amides 2. Yields are isolated yields with respect to 1.
Fig. 2
Fig. 2. 11B{1H} NMR spectra of [Et4N][1-(COOH)–CB11H11] (a), [Et4N][1] (b) and [Et4N][2a] (c) (acetone-d6, 22 °C, 160 MHz for 11B).
Scheme 2
Scheme 2. Synthesis of carborane amides 4 starting from halogenated carborane precursors. Yields are isolated yields with respect to 3.
Fig. 3
Fig. 3. Packing of 2e in crystals of the composition Na[Et4N][2e]2; H atoms omitted for clarity; 30% displacement ellipsoids.
Fig. 4
Fig. 4. X-ray crystal structures of 2e (a) and 2m (b). Cations and H atoms except for N–H omitted for clarity; 30% displacement ellipsoids.
Scheme 3
Scheme 3. Ester formation starting from 1 (a) and reduction of amides 2i and 2j (b).

Similar articles

Cited by

References

    1. Grimes R. N., Carboranes, Elsevier, Amsterdam, 3rd edn, 2016
    2. Hosmane N. S., Boron Science: New Technologies and Applications, Taylor & Francis/CRC, Boca Raton, 2011
    1. Douvris C. Michl J. Chem. Rev. 2013;113:PR179–PR233. doi: 10.1021/cr400059k. - DOI - PubMed
    2. Knapp C., Weakly Coordinating Anions: Halogenated Borates and Dodecaborates in Comprehensive Inorganic Chemistry II, Elsevier, Amsterdam, 2013, vol. 1, pp. 651–679
    3. Grimes R. N. Dalton Trans. 2015;44:5939–5956. doi: 10.1039/C5DT00231A. - DOI - PubMed
    4. Poater J. Solà M. Teixidor F. Chem.–Eur. J. 2016;22:7437–7443. doi: 10.1002/chem.201600510. - DOI - PubMed
    5. Melichar P. Hnyk D. Fanfrlík J. Phys. Chem. Chem. Phys. 2018;20:4666–4675. doi: 10.1039/C7CP07422K. - DOI - PubMed
    6. Axtell J. C. Saleh L. M. A. Qian E. A. Wixtrom A. I. Spokoyny A. M. Inorg. Chem. 2018;57:2333–2350. doi: 10.1021/acs.inorgchem.7b02912. - DOI - PMC - PubMed
    1. Finze M. Sprenger J. A. P. Schaack B. B. Dalton Trans. 2010;39:2708–2716. doi: 10.1039/B922720B. - DOI - PubMed
    2. Spokoyny A. M. Machan C. W. Clingerman D. J. Rosen M. S. Wiester M. J. Kennedy R. D. Stern C. L. Sarjeant A. A. Mirkin C. A. Nat. Chem. 2011;3:590–596. doi: 10.1038/nchem.1088. - DOI - PubMed
    3. Yao Z.-J. Jin G.-X. Coord. Chem. Rev. 2013;257:2522–2535. doi: 10.1016/j.ccr.2013.02.004. - DOI
    4. El-Hellani A. Lavallo V. Angew. Chem., Int. Ed. 2014;53:4489–4493. doi: 10.1002/anie.201402445. - DOI - PubMed
    5. Asay M. J. Fisher S. P. Lee S. E. Tham F. S. Borchardt D. Lavallo V. Chem. Commun. 2015;51:5359–5362. doi: 10.1039/C4CC08267B. - DOI - PubMed
    6. Riley L. E. Chan A. P. Y. Taylor J. Man W. Y. Ellis D. Rosair G. M. Welch A. J. Sivaev I. B. Dalton Trans. 2016;45:1127–1137. doi: 10.1039/C5DT03417E. - DOI - PubMed
    7. Estrada J. Lugo C. A. McArthur S. G. Lavallo V. Chem. Commun. 2016;52:1824–1826. doi: 10.1039/C5CC08377J. - DOI - PubMed
    8. Chan A. L. Estrada J. Kefalidis C. E. Lavallo V. Organometallics. 2016;35:3257–3260. doi: 10.1021/acs.organomet.6b00622. - DOI
    9. Fisher S. P. El-Hellani A. Tham F. S. Lavallo V. Dalton Trans. 2016;45:9762–9765. doi: 10.1039/C6DT00551A. - DOI - PubMed
    10. Holmes J. Pask C. M. Fox M. A. Willans C. E. Chem. Commun. 2016;52:6443–6446. doi: 10.1039/C6CC01650B. - DOI - PubMed
    11. Zhou Y.-P. Raoufmoghaddam S. Szilvási T. Driess M. Angew. Chem., Int. Ed. 2016;55:12868–12872. doi: 10.1002/anie.201606979. - DOI - PubMed
    12. Šembera F. Plutnar J. Higelin A. Janoušek Z. Císařová I. Michl J. Inorg. Chem. 2016;55:3797–3806. doi: 10.1021/acs.inorgchem.5b02678. - DOI - PubMed
    13. Coburger P. Schulz J. Klose J. Schwarze B. Sárosi M. B. Hey-Hawkins E. Inorg. Chem. 2017;56:292–304. doi: 10.1021/acs.inorgchem.6b02173. - DOI - PubMed
    14. Selg C. Neumann W. Lönnecke P. Hey-Hawkins E. Zeitler K. Chem.–Eur. J. 2017;23:7932–7937. doi: 10.1002/chem.201700209. - DOI - PubMed
    15. Estrada J. Lavallo V. Angew. Chem., Int. Ed. 2017;56:9906–9909. doi: 10.1002/anie.201705857. - DOI - PubMed
    1. Jude H. Disteldorf H. Fischer S. Wedge T. Hawkridge A. M. Arif A. M. Hawthorne M. F. Muddiman D. C. Stang P. J. J. Am. Chem. Soc. 2005;127:1231–12139. doi: 10.1021/ja053050i. - DOI - PubMed
    2. Huang S.-L. Weng L.-H. Jin G.-X. Dalton Trans. 2012;41:11657–11662. doi: 10.1039/C2DT30708A. - DOI - PubMed
    3. Kobr L. Zhao K. Shen Y. Shoemaker R. K. Rogers C. T. Michl J. Adv. Mater. 2013;25:443–448. doi: 10.1002/adma.201203294. - DOI - PubMed
    4. Kennedy R. D. Krungleviciute V. Clingerman D. J. Mondloch J. E. Peng Y. Wilmer C. E. Sarjeant A. A. Snurr R. Q. Hupp J. T. Yildirim T. Farha O. K. Mirkin C. A. Chem. Mater. 2013;25:3539–3543. doi: 10.1021/cm4020942. - DOI
    5. Han Y.-F. Jin G.-X. Acc. Chem. Res. 2014;47:3571–3579. doi: 10.1021/ar500335a. - DOI - PubMed
    6. Housecroft C. E. J. Organomet. Chem. 2015;798:218–228. doi: 10.1016/j.jorganchem.2015.04.047. - DOI
    7. Clingerman D. J. Morris W. Mondloch J. E. Kennedy R. D. Sarjieant A. A. Stern C. Hupp J. T. Farha O. K. Mirkin C. A. Chem. Commun. 2015;51:6521–6523. doi: 10.1039/C4CC09212K. - DOI - PubMed
    8. Rodríguez-Hermida S. Tsang M. Y. Vignatti C. Stylianou K. C. Guillerm V. Pérez-Carvajal J. Teixidor F. Viñas C. Choquesillo-Lazarte D. Verdugo-Escamilla C. Peral I. Juanhuix J. Verdaguer A. Imaz I. Maspoch D. Giner Planas J. Angew. Chem., Int. Ed. 2016;55:16049–16053. doi: 10.1002/anie.201609295. - DOI - PubMed
    9. Tsang M. Y. Rodríguez-Hermida S. Stylianou K. C. Tan F. Negi D. Teixidor F. Viñas C. Choquesillo-Lazarte D. Verdugo-Escamilla C. Guerrero M. Sort J. Juanhuix J. Maspoch D. Giner Planas J. Cryst. Growth Des. 2017;17:846–857. doi: 10.1021/acs.cgd.6b01682. - DOI
    1. Sivaev I. B. Bregadze V. V. Eur. J. Inorg. Chem. 2009:1433–1450. doi: 10.1002/ejic.200900003. - DOI
    2. Issa F. Kassiou M. Rendina L. M. Chem. Rev. 2011;111:5701–5722. doi: 10.1021/cr2000866. - DOI - PubMed
    3. Scholz M. H-Hawkins E. Chem. Rev. 2011;111:7035–7062. doi: 10.1021/cr200038x. - DOI - PubMed
    4. Gabel D. Pure Appl. Chem. 2015;87:173–179.
    5. Leśnikowski Z. J. J. Med. Chem. 2016;59:7738–7758. doi: 10.1021/acs.jmedchem.5b01932. - DOI - PubMed