Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May 8;8(30):16788-16799.
doi: 10.1039/c8ra02108b. eCollection 2018 May 3.

Fully solution-induced high performance indium oxide thin film transistors with ZrO x high-k gate dielectrics

Affiliations

Fully solution-induced high performance indium oxide thin film transistors with ZrO x high-k gate dielectrics

Li Zhu et al. RSC Adv. .

Abstract

Solution based deposition has been recently considered as a viable option for low-cost flexible electronics. In this context, research efforts have been increasingly focused on the development of suitable solution-processed materials for oxide based transistors. In this work, we report a fully solution synthesis route, using 2-methoxyethanol as solvent, for the preparation of In2O3 thin films and ZrO x gate dielectrics, as well as the fabrication of In2O3-based TFTs. To verify the possible applications of ZrO x thin films as the gate dielectric in complementary metal oxide semiconductor (CMOS) electronics, fully solution-induced In2O3 TFTs based on ZrO2 dielectrics have been integrated and investigated. The devices, with an optimized annealing temperature of 300 °C, have demonstrated high electrical performance and operational stability at a low voltage of 2 V, including a high μ sat of 4.42 cm2 V-1 s-1, low threshold voltage of 0.31 V, threshold voltage shift of 0.15 V under positive bias stress for 7200 s, and large I on/I off of 7.5 × 107, respectively. The as-fabricated In2O3/ZrO x TFTs enable fully solution-derived oxide TFTs for potential application in portable and low-power consumption electronics.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Fig. 1
Fig. 1. Schematic diagram of solution-derived In2O3 and ZrOx thin films and In2O3 TFTs device fabrication.
Fig. 2
Fig. 2. XRD patterns of ZrOx thin films as a function of annealing temperature.
Fig. 3
Fig. 3. AFM images of the ZrOx thin films annealed at (a) 300 °C, (b) 400 °C, (c) 500 °C, (d) 600 °C.
Fig. 4
Fig. 4. Optical transmittances of ZrOx thin films annealed at different temperatures. The insets above and below display the band gap energy values of these ZrOx films and photographs of bare glass and as-processed ZrOx thin films annealed at various temperatures, respectively.
Fig. 5
Fig. 5. Annealing temperature dependent refractive index (a) and fitting packing density (b) for solution-derived ZrO2 thin films.
Fig. 6
Fig. 6. XPS spectra of O 1s (a) and Zr 3d peaks (c) for ZrOx thin films as a function of annealing temperature. (b) Semiquantitative analyses of the oxygen component for the corresponding ZrOx thin films. (d) Si 2p XPS core-level spectra of Si/ZrOx gate stacks annealed at different temperatures.
Fig. 7
Fig. 7. (a) Areal capacitance and (b) leakage current density of the ZrOx dielectric thin films annealed at various temperatures.
Fig. 8
Fig. 8. (a) Schematic illustration of the bottom-gate and top-contact In2O3/SiO2 TFTs. (b) and (c) Output and transfer characteristics of the In2O3/SiO2TFTs.
Fig. 9
Fig. 9. Output and transfer characteristics of the In2O3/ZrOx TFTs.
Fig. 10
Fig. 10. (a) Transfer curves of 300 °C-annealed In2O3/ZrOx TFT under PBS with a VG value of 2 V for 7200 s. (b) The VTH shift as a function of stress time. The inset shows the time dependence of ΔVTH in the In2O3 TFT with an ZrOx gate dielectric under the bias-stress of 1 V. (c) The energy band diagram of the 300 °C-annealed In2O3/ZrOx TFT under PBS.

Similar articles

Cited by

References

    1. Nomura K. Ohta H. Takagi A. Kamiya T. Hirano M. Hosono H. Nature. 2004;432:488–492. doi: 10.1038/nature03090. - DOI - PubMed
    1. Lorenz M. Rao M. S. R. Venkatesan T. Fortunato E. Barquinha P. Branquinho R. Salgueiro D. Martins R. Carlos E. Liu A. Shan F. K. Grundmann M. Boschker H. Mukherjee J. Priyadarshini M. DasGupta N. Rogers D. J. Teherani F. H. Sandana E. V. Bove P. Rietwyk K. Zaban A. Veziridis A. Weidenkaff A. Muralidhar M. Murakami M. Abel S. Fompeyrine J. Zuniga-Perez J. Ramesh R. Spaldin N. A. Ostanin S. Borisov V. Mertig I. Lazenka V. Srinivasan G. Prellier W. Uchida M. Kawasaki M. Pentcheva R. Gegenwart P. Granozio F. M. Fontcuberta J. Pryds N. J. Phys. D: Appl. Phys. 2016;49:433001. doi: 10.1088/0022-3727/49/43/433001. - DOI
    1. Fujii M. Ishikawa Y. Ishihara R. Johan V. D. C. Mofrad M. R. Horita M. Uraoka Y. Appl. Phys. Lett. 2013;102:122107. doi: 10.1063/1.4798519. - DOI
    1. Ju S. Y. Facchetti A. Xuan Y. Liu J. Ishikawa F. Ye P. D. Zhou C. W. Marks T. J. Janes D. B. Nat. Nanotechnol. 2007;2:378–384. doi: 10.1038/nnano.2007.151. - DOI - PubMed
    1. Han S. Y. Herman G. S. Chang C. H. J. Am. Chem. Soc. 2011;133:5166–5169. doi: 10.1021/ja104864j. - DOI - PubMed