Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov 8;9(62):36410-36415.
doi: 10.1039/c9ra06524e. eCollection 2019 Nov 4.

A stimuli responsive triplet-triplet annihilation upconversion system and its application as a ratiometric sensor for Fe3+ ions

Affiliations

A stimuli responsive triplet-triplet annihilation upconversion system and its application as a ratiometric sensor for Fe3+ ions

Shuoran Chen et al. RSC Adv. .

Abstract

A ratiometric fluorescent sensor for the detection of Fe3+ ions is achieved based on triplet-triplet annihilation upconversion (TTA-UC) luminescence. A new anthracene derivative (named as DHTPA) is designed and synthesized and reveals similar optical properties to 9,10-diphenylanthracene (DPA) and is used as a stimuli responsive annihilator in a TTA-UC system due to its complexation ability. As a result, the UC emission can be significantly quenched by Fe3+ ions, while the phosphorescence (PL) emission of sensitizer palladium(ii) octaetylporphyrin (PdOEP) remains nearly constant, which makes the PL signal an appropriate internal reference for the UC signal. The UC and ratio signals (I UC/I PL) both reveal a good linear relationship with Fe3+ ion concentration, which for the first time makes the TTA-UC system a perfect ratiometric sensor for Fe3+ ion detection. This sensing method will open a novel avenue to achieve ratiometric sensors in chemical and biological fields.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Schematic illustration of the synthetic route of DHTPA.
Fig. 2
Fig. 2. Normalized absorption and steady-state photoluminescence spectra of (a) DHTPA and (b) PdOEP in DMF at room temperature.
Fig. 3
Fig. 3. UC emission spectrum of DHTPA/PdOEP system; inset: histogram of integrated UC intensity under different pH environments.
Fig. 4
Fig. 4. (a) UC emission spectra of DHTPA/PdOEP system at environments of different concentrations of Fe3+ ions; (b) plot of integrated intensities of UC and PL in (a) dependent on concentration of Fe3+ ions; (c) plot of ratio intensities (IUC/IPL) dependent on concentration of Fe3+ ions; insets: photographs of purple emission from blank sample without Fe3+ ions (left) and red emission from sample with 10 μM Fe3+ ions (right) under excitation of 532 nm through an optical filter (d) mechanism of the ratiometric sensor based on TTA-UC.
Fig. 5
Fig. 5. (a) UC emission spectra of DHTPA/PdOEP system at environments of different types of metal ions (10 μM); (b) histogram of quenching ratio calculated from UC emissions in (a).

Similar articles

Cited by

References

    1. Logeman B. L. Thiele D. J. J. Biol. Chem. 2018;293:15497. doi: 10.1074/jbc.RA118.004802. - DOI - PMC - PubMed
    2. Lu Y. Z. Fu L. Li N. Ding J. Bai Y. N. Samaras P. Zeng R. J. Chemosphere. 2018;198:370. doi: 10.1074/jbc.RA118.004802. - DOI - PubMed
    3. Huang X. W. Boutroy É. Makvandi S. Beaudoin G. Corriveau L. Toni A. F. D. Miner. Deposita. 2019;54:525. doi: 10.1074/jbc.RA118.004802. - DOI
    1. Peng Y. Huang H. Zhang Y. Kang C. Chen S. Song L. Liu D. Zhong C. Nat. Commun. 2018;9:187. doi: 10.1038/s41467-017-02600-2. - DOI - PMC - PubMed
    1. Mun G. Jung S. H. Ahn A. Lee S. S. Choi M. Y. Kim D. H. Kim J. Y. Jung J. H. RSC Adv. 2016;6:53912. doi: 10.1039/C6RA09133D. - DOI
    2. Yazdanpanah A. Ghasimi D. S. M. Min G. K. Nakhla G. Hafez H. Keleman M. Environ. Sci. Pollut. Res. 2018;25:29240. doi: 10.1039/C6RA09133D. - DOI - PubMed
    3. Sharp P. A. Sugden B. Sambrook J. Biochemistry. 1973;12:3055. doi: 10.1039/C6RA09133D. - DOI - PubMed
    4. Tsubaki M. Srivastava R. B. Yu N. T. Biochemistry. 1982;21:1132. doi: 10.1039/C6RA09133D. - DOI - PubMed
    5. Outten F. W. Djaman O. G. Mol. Microbiol. 2010;52:861. doi: 10.1039/C6RA09133D. - DOI - PubMed
    1. Rouault T. A. Nat. Chem. Biol. 2006;2:406. doi: 10.1038/nchembio807. - DOI - PubMed
    1. Zecca L. Youdim M. B. Riederer P. Connor J. R. Crichton R. R. Nat. Rev. Neurosci. 2004;5:863. doi: 10.1038/nrn1537. - DOI - PubMed