Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 27;8(29):15870-15875.
doi: 10.1039/c8ra00751a.

A sensitive probe for amyloid fibril detection with strong fluorescence and early response

Affiliations

A sensitive probe for amyloid fibril detection with strong fluorescence and early response

Xiaolin Zheng et al. RSC Adv. .

Abstract

We synthesized a new probe, 4-[2-(2-naphthyl)-(E)-ethenyl]-benzyl(triphenyl)phosphonium bromide (NEB), to detect the formation of amyloid fibrils of bovine insulin. The fluorescence intensity of NEB in the presence of insulin fibrils was 30 times higher than that before fibrillation, with the fluorescence quantum yield increased from 2.5% to 78%. In comparison with the commercially available probe, thioflavin T (ThT), NEB exhibits a 10 times stronger fluorescence and a shorter identification lag phase for detecting insulin fibrillation, indicating a higher sensitivity in detection of insulin oligomers and fibrils.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Chemical structure of NEB.
Fig. 2
Fig. 2. (A) Normalized absorption (red) and emission (black) spectra of NEB alone in ethanol solution. (B) Emission spectra of NEB in different ratios of ethanol: glycerol. 100 : 0 (black), 80 : 20 (red), 60 : 40 (blue), 50 : 50 (pink) 40 : 60 (green), 20 : 80 (dark blue), inset: plot of the emission intensity for each solution versus percentage glycerol present.
Fig. 3
Fig. 3. Emission spectra of (A) NEB (2 μM) and (B) ThT (2 μM) dissolved in water (black) and mature fibrils solution (red), respectively. λex = 325 nm (for NEB), 410 nm (for ThT). Photographs of mixtures of NEB and ThT with fibrillar forms of insulin taken under UV illumination.
Fig. 4
Fig. 4. Fluorescence decay profiles of NEB (A) and ThT (B) in water solution (black) and mature fibrils solution (red), respectively.
Fig. 5
Fig. 5. (A) The emission spectra of ThT bound with insulin amyloid fibrils (black) before and (red) after the addition of NEB, λex = 410 nm. (B) The emission spectra of ThT bound with insulin amyloid fibrils after addition of NEB at different excitation wavelength, λex = 310 nm (blue), λex = 410 nm (red).
Fig. 6
Fig. 6. (A) Emission intensity of NEB (black, 2 μM) and ThT (red, 2 μM) monitoring insulin (5 μM) fibrillation, λex = 325 nm (for NEB), 410 nm (for ThT). NEB and ThT monitoring insulin fibrillation at the same time, the emission of intensity of NEB (blue, λex = 310 nm), ThT (green, λex = 310 nm) and ThT (pink, λex = 410 nm). (B) The enlarged part of insulin fibrillation from t = 0 to 7 h.

Similar articles

Cited by

References

    1. Chiti F. Dobson C. M. Annu. Rev. Biochem. 2006;75:333–366. doi: 10.1146/annurev.biochem.75.101304.123901. - DOI - PubMed
    2. Dobson C. M. Nature. 2003;426:884–890. doi: 10.1038/nature02261. - DOI - PubMed
    3. Selkoe D. J. Nature. 2003;426:900–904. doi: 10.1038/nature02264. - DOI - PubMed
    4. Murphy R. M. Annu. Rev. Biomed. Eng. 2002;4:155–174. doi: 10.1146/annurev.bioeng.4.092801.094202. - DOI - PubMed
    1. Ariesandi W. Chang C.-F. Chen T.-E. Chen Y.-R. PLoS One. 2013;8:e53487. - PMC - PubMed
    1. Krebs M. R. Bromley E. H. Donald A. M. J. Struct. Biol. 2005;149:30–37. doi: 10.1016/j.jsb.2004.08.002. - DOI - PubMed
    2. Khurana R. Ionescu-Zanetti C. Pope M. Li J. Nielson L. Ramírez-Alvarado M. Regan L. Fink A. L. Carter S. A. Biophys. J. 2003;85:1135–1144. doi: 10.1016/S0006-3495(03)74550-0. - DOI - PMC - PubMed
    3. Hwang W. Zhang S. Kamm R. D. Karplus M. Proc. Natl. Acad. Sci. U. S. A. 2004;101:12916–12921. doi: 10.1073/pnas.0402634101. - DOI - PMC - PubMed
    1. Sunde M. Serpell L. C. Bartlam M. Fraser P. E. Pepys M. B. Blake C. C. F. J. Mol. Biol. 1997;273:729–739. doi: 10.1006/jmbi.1997.1348. - DOI - PubMed
    2. Jiménez J. L. Nettleton E. J. Bouchard M. Robinson C. V. Dobson C. M. Saibil H. R. Proc. Natl. Acad. Sci. U. S. A. 2002;99:9196–9201. doi: 10.1073/pnas.142459399. - DOI - PMC - PubMed
    1. Biancalana M. Koide S. Biochim. Biophys. Acta. 2010;1804:1405–1412. doi: 10.1016/j.bbapap.2010.04.001. - DOI - PMC - PubMed
    2. LeVine 3rd H. Protein Sci. 1993;2:404. doi: 10.1002/pro.5560020312. - DOI - PMC - PubMed