Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 31;8(10):5441-5450.
doi: 10.1039/c7ra12393k. eCollection 2018 Jan 29.

Fabrication and photocatalytic property of magnetic SrTiO3/NiFe2O4 heterojunction nanocomposites

Affiliations

Fabrication and photocatalytic property of magnetic SrTiO3/NiFe2O4 heterojunction nanocomposites

Yongmei Xia et al. RSC Adv. .

Abstract

Novel multifunctional SrTiO3/NiFe2O4 nanocomposites were successfully fabricated via a two-step route. The as-prepared samples were characterized by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), field-emission transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). The results indicate that the SrTiO3/NiFe2O4 heterostructures are composed of SrTiO3 spheroidal nanoparticles adhered to NiFe2O4 polyhedra. The heterojunction established in the composite material accelerates the process of electron-hole pair separation and boosts the photo-Fenton reaction. Among the samples, 15 wt% SrTiO3/NiFe2O4 nanocomposites exhibit a powerful light response and excellent room temperature ferromagnetism. Subsequently, the photocatalytic degradation of RhB over the as-prepared samples was investigated and optimized, revealing that the 15 wt% SrTiO3/NiFe2O4 nanocomposites exhibit the best photocatalytic activity and stability under simulated solar light irradiation. Furthermore, according to experimental results, the possible mechanism of improved photocatalytic activity was also proposed.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Fig. 1
Fig. 1. XRD patterns of pure SrTiO3, pure NiFe2O4 and 15 wt% SrTiO3/NiFe2O4 nanocomposites.
Fig. 2
Fig. 2. XPS spectra of the 15 wt% SrTiO3/NiFe2O4 nanocomposites: the XPS survey spectrum (a), Ni 2p (b), Fe 2p (c), Sr 3d (d), Ti 2p (e) and O 1s (f).
Fig. 3
Fig. 3. SEM image of pure NiFe2O4 (a), pure SrTiO3 (b), 15 wt% SrTiO3/NiFe2O4 nanocomposites (c) and EDS spectrum of 15 wt% SrTiO3/NiFe2O4 nanocomposites (d).
Fig. 4
Fig. 4. TEM (a), HRTEM image (b–d) and the SAED pattern (e) for the SrTiO3/NiFe2O4 nanocomposites.
Fig. 5
Fig. 5. The corresponding elemental mapping images (a–f) and spot EDS pattern (g) for the SrTiO3/NiFe2O4 nanocomposites.
Fig. 6
Fig. 6. UV-vis DRS (a) and band gap energy (Eg) (b) of the pure NiFe2O4, pureSrTiO3 and 15 wt% SrTiO3/NiFe2O4 nanocomposite.
Fig. 7
Fig. 7. The hysteresis loops of pure NiFe2O4 and 15 wt% SrTiO3/NiFe2O4 nanocomposite (inset: the magnetic separation of 15-NFO/BOI nanocomposites by a magnet).
Fig. 8
Fig. 8. Photocatalytic degradation of RhB for all samples under simulated solar light illumination (a), absorption spectra of RhB over 15 wt% SrTiO3/NiFe2O4 nanocomposites (b), −ln(Ct/C0) vs. time for photodegradation of RhB by different catalysts (c), cycling degradation rate (d) for RhB of 15 wt% SrTiO3/NiFe2O4 nanocomposites under simulated solar light illumination.
Fig. 9
Fig. 9. Reactive species trapping experiments over 15 wt% SrTiO3/NiFe2O4 nanocomposites.
Fig. 10
Fig. 10. PL spectra (excited at 325 nm) of pure NiFe2O4 and 15 wt% SrTiO3/NiFe2O4 nanocomposites.
Fig. 11
Fig. 11. Schematic illustration of excitation and separation of photoinduced electron–hole pairs for SrTiO3/NiFe2O4 heterojunction nanocomposites under simulated solar light irradiation.

Similar articles

Cited by

References

    1. Liu J. Liu Y. Liu N. Y. Han Y. Z. Zhang X. Huang H. Lifshitz Y. Lee S. T. Zhong J. Kang Z. H. Science. 2015;347:970–974. doi: 10.1126/science.aaa3145. - DOI - PubMed
    1. Shannon M. A. Bohn P. W. Elimelech M. Georgiadis J. G. Marinas B. J. Mayes A. M. Nature. 2008;452:301–310. doi: 10.1038/nature06599. - DOI - PubMed
    1. Ahuja A. Mosalam K. M. Energy and Buildings. 2017;153:448–460. doi: 10.1016/j.enbuild.2017.06.062. - DOI
    1. Piskunov S. Lisovski O. Begens J. Bocharov D. Zhukovskii Y. F. Wessel M. Spohr E. J. Phys. Chem. C. 2015;119:18686–18696.
    1. Cherian C. T. Sundaramurthy J. Reddy M. V. Kumar P. S. Mani K. Pliszka D. Sow C. H. Ramakrishna S. Chowdari B. V. R. ACS Appl. Mater. Interfaces. 2013;5:9957–9963. - PubMed