Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug 2;8(49):27631-27644.
doi: 10.1039/c8ra04368j.

Fe3O4@SiO2 nanoparticle supported ionic liquid for green synthesis of antibacterially active 1-carbamoyl-1-phenylureas in water

Affiliations

Fe3O4@SiO2 nanoparticle supported ionic liquid for green synthesis of antibacterially active 1-carbamoyl-1-phenylureas in water

Mahmoud Nasrollahzadeh et al. RSC Adv. .

Abstract

In the present work, we have designed a novel, heterogeneous and recyclable magnetic Brønsted acidic ionic liquid based on 5-phenyl-1H-tetrazole. The {Fe3O4@SiO2@(CH2)35-phenyl-1H-tetrazole-SO3H/Cl} ([FSTet-SO3H]Cl) was prepared via the immobilization of 5-phenyl-1H-tetrazole-bonded sulfonic acid onto the surface of silica-coated magnetic nanoparticles using 3-chloropropyltriethoxysilane as a linker. The catalyst was characterized by XRD, TEM, FESEM, EDS, TG-DTA, and FT-IR. The ability and high activity of this catalyst were demonstrated in the synthesis of 1-carbamoyl-1-phenylureas with good to excellent yields via a new, simple and one-pot procedure in aqueous media under reflux conditions. This procedure has advantages such as high yields, short reaction times, a simple methodology and work-up process, green reaction conditions, high stability, catalytic activity, and easy preparation, separation and reusability of the catalyst. The synthesis of these compounds was confirmed by FT-IR, 1H NMR, 13C NMR and CHN. In addition, we investigated the biological properties of the 1-carbamoyl-1-phenylureas as newly synthesized compounds. The described catalyst could be easily separated from the reaction mixture by additional magnetic force and reused several times without a remarkable loss of its catalytic activity and any considerable changes in the product yield and the reaction time.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Synthesis of 1-carbamoyl-1-phenylureas.
Scheme 2
Scheme 2. Preparation of arylcyanamides (A) and 5-phenyl-1H-tetrazole (B).
Scheme 3
Scheme 3. Synthesis of {Fe3O4@SiO2@(CH2)35-phenyl-1H-tetrazole-SO3H/Cl}.
Fig. 1
Fig. 1. The EDS spectra of Fe3O4@SiO2 (A), Fe3O4@SiO2@(CH2)3-Cl (B), Fe3O4@SiO2@(CH2)35-phenyl-1H-tetrazole (C) and [FSTet-SO3H]Cl (D).
Fig. 2
Fig. 2. FESEM images of Fe3O4@SiO2 (A), Fe3O4@SiO2@(CH2)3Cl (B), Fe3O4@SiO2@(CH2)35-phenyl-1H-tetrazole (C) and [FSTet-SO3H]Cl (D).
Fig. 3
Fig. 3. TEM images of [FSTet-SO3H]Cl.
Fig. 4
Fig. 4. TG-DTA analysis of [FSTet-SO3H]Cl.
Fig. 5
Fig. 5. The FT-IR spectra of 5-phenyl-1H-tetrazole (A), Fe3O4@SiO2 (B), Fe3O4@SiO2@(CH2)3Cl (C), Fe3O4@SiO2@(CH2)35-phenyl-1H-tetrazole (D) and [FSTet-SO3H]Cl (E).
Fig. 6
Fig. 6. The XRD patterns of Fe3O4@SiO2 (A), Fe3O4@SiO2@(CH2)3Cl (B), Fe3O4@SiO2@(CH2)35-phenyl-1H-tetrazole (C) and [FSTet-SO3H]Cl (D).
Fig. 7
Fig. 7. Magnetization curve for [FSTet-SO3H]Cl.
Scheme 4
Scheme 4. Preparation of primary carbamates.
Fig. 8
Fig. 8. FT-IR spectrum of 1-carbamoyl-1-(3-bromophenyl)urea (1).
Fig. 9
Fig. 9. Expanded 1H NMR spectrum (400 MHz, CDCl3) of 1-carbamoyl-1-(3-bromophenyl)urea (1).
Fig. 10
Fig. 10. 13C NMR spectrum (100 MHz, CDCl3) of 1-carbamoyl-1-(3-bromophenyl)urea (1).
Scheme 5
Scheme 5. Possible mechanism for the synthesis of 1-carbamoyl-1-phenylureas.
Fig. 11
Fig. 11. Chemical structures of many bioactive arylureas.
Fig. 12
Fig. 12. Antibacterial activity of 2-(4-(1-carbamoylureido)phenyl)malonamide (7) against E. coli.
Fig. 13
Fig. 13. Reusability of [FSTet-SO3H]Cl for the synthesis of 1-carbamoyl-1-(4-methoxylphenyl)urea.
Fig. 14
Fig. 14. FESEM images of recovered [FSTet-SO3H]Cl.
Fig. 15
Fig. 15. TEM images of recovered [FSTet-SO3H]Cl.

Similar articles

Cited by

References

    1. Marsh K. N. Boxall J. A. Lichtenthaler R. Fluid Phase Equilib. 2004;219:93. doi: 10.1016/j.fluid.2004.02.003. - DOI
    1. Bentivoglio G. Röder T. Fasching M. Buchberger M. Schottenberger H. Sixta H. Lenzinger Ber. 2006;86:154.
    1. Welton T. Chem. Rev. 1999;99(8):2071. doi: 10.1021/cr980032t. - DOI - PubMed
    2. Yue C. Fang D. Liu L. Yi T. F. J. Mol. Liq. 2011;163:99. doi: 10.1016/j.molliq.2011.09.001. - DOI
    3. Greaves T. L. Drummond C. J. Chem. Rev. 2008;108:206. doi: 10.1021/cr068040u. - DOI - PubMed
    4. Hallett J. P. Welton T. Chem. Rev. 2011;111:3508. doi: 10.1021/cr1003248. - DOI - PubMed
    1. Jonathan G. H. Heather D. W. Richard P. S. Ann E. V. Robin D. R. Chem. Commun. 1998;16:1765.
    1. Pham T. P. T. Cho C. W. Yun Y. S. Water Res. 2010;44:352. doi: 10.1016/j.watres.2009.09.030. - DOI - PubMed