Interface studies of well-controlled polymer bilayers and field-effect transistors prepared by a mixed-solvent method
- PMID: 35542823
- PMCID: PMC9082021
- DOI: 10.1039/c7ra13143g
Interface studies of well-controlled polymer bilayers and field-effect transistors prepared by a mixed-solvent method
Abstract
The properties of semiconductor/dielectric interfaces are crucial to the performance of polymer field-effect transistors. The key to fabricating high-performance polymer transistors by spin-coating is solving solvent corrosion issues, wherein the solvent of the top polymer produces a rough interface or damage on the underlying polymer layer during deposition. Herein, we propose a mixed-solvent method that employs a mixture of an orthogonal solvent of the underlying polymer and a good solvent of the top polymer as the solvent of the top polymer to prepare polymer bilayers and produce a comparative study of the trap density at the semiconductor/dielectric interface of the corresponding transistor. By changing the ratio of orthogonal solvent to good solvent, namely the degree of orthogonality of the mixed solvent with respect to the underlying polymer, the interface and film qualities of polymer bilayers can be well controlled. We applied this method to spin-coat poly(3-hexylthiophene) (P3HT) on poly(methylmethacrylate) (PMMA) with a mixture of cyclohexane (orthogonal solvent) and chloroform (good solvent). The results of morphology characterizations and electrical property studies indicate the optimal ratio of cyclohexane to chloroform for preparing high-quality P3HT/PMMA bilayers for field-effect conduction is 7 : 3. Transistors based on the optimal bilayers with a bottom-gate/top-contact configuration and a long channel length show good performance. The trap density at the P3HT/PMMA interface is evaluated to be 3.6 × 1012 cm-2 eV-1 from the subthreshold swing, characterizing the distribution of the interface trap levels across the bandgap in P3HT. Furthermore, based on deviations from ideality in the capacitance-voltage characteristics of the metal-insulator-semiconductor capacitor in the device, the traps at the interface are found to be acceptor-type, with the trap density determined to be 2.3 × 1011 cm-2. This value is in a good agreement with that estimated from the subthreshold swing.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures






Similar articles
-
Printing Semiconductor-Insulator Polymer Bilayers for High-Performance Coplanar Field-Effect Transistors.Adv Mater. 2018 Jan;30(2). doi: 10.1002/adma.201704695. Epub 2017 Nov 27. Adv Mater. 2018. PMID: 29178351
-
Utilizing the Diffusion of Fluorinated Polymers to Modify the Semiconductor/Dielectric Interface in Solution-Processed Conjugated Polymer Field-Effect Transistors.ACS Appl Mater Interfaces. 2021 Feb 24;13(7):8682-8691. doi: 10.1021/acsami.0c23058. Epub 2021 Feb 10. ACS Appl Mater Interfaces. 2021. PMID: 33565853
-
Solvent Effects on Morphology and Electrical Properties of Poly(3-hexylthiophene) Electrospun Nanofibers.Polymers (Basel). 2019 Sep 14;11(9):1501. doi: 10.3390/polym11091501. Polymers (Basel). 2019. PMID: 31540102 Free PMC article.
-
Scalability of Schottky barrier metal-oxide-semiconductor transistors.Nano Converg. 2016;3(1):11. doi: 10.1186/s40580-016-0071-0. Epub 2016 May 16. Nano Converg. 2016. PMID: 28191421 Free PMC article. Review.
-
Status of Aluminum Oxide Gate Dielectric Technology for Insulated-Gate GaN-Based Devices.Materials (Basel). 2022 Jan 21;15(3):791. doi: 10.3390/ma15030791. Materials (Basel). 2022. PMID: 35160737 Free PMC article. Review.
Cited by
-
Effects of Charge Traps on Hysteresis in Organic Field-Effect Transistors and Their Charge Trap Cause Analysis through Causal Inference Techniques.Sensors (Basel). 2023 Feb 17;23(4):2265. doi: 10.3390/s23042265. Sensors (Basel). 2023. PMID: 36850862 Free PMC article. Review.
-
Filamentary Resistive Switching and Capacitance-Voltage Characteristics of the a-IGZO/TiO2 Memory.Sci Rep. 2020 Jun 9;10(1):9276. doi: 10.1038/s41598-020-66339-5. Sci Rep. 2020. PMID: 32518357 Free PMC article.
-
A high-performance organic thin-film transistor with Parylene/PMMA bilayer insulation based on P3HT.iScience. 2024 Apr 11;27(5):109724. doi: 10.1016/j.isci.2024.109724. eCollection 2024 May 17. iScience. 2024. PMID: 38711457 Free PMC article.
References
-
- Sun X. Di C.-a. Liu Y. J. Mater. Chem. 2010;20:2599. doi: 10.1039/B921449F. - DOI
-
- Bäcklund T. G. Sandberg H. G. O. Österbacka R. Stubb H. Mäkelä T. Jussila S. Synth. Met. 2005;148:87–91. doi: 10.1016/j.synthmet.2004.08.033. - DOI
-
- Rodríguez A. B. Tomlinson M. R. Khodabakhsh S. Chang J.-F. Cousin F. Lott D. Sirringhaus H. Huck W. T. S. Higgins A. M. Geoghegan M. J. Mater. Chem. C. 2013;1:7736. doi: 10.1039/C3TC31076K. - DOI
-
- Zhang L. Yang D. Yang S. Zou B. Appl. Phys. A: Mater. Sci. Process. 2014;116:1511–1516. doi: 10.1007/s00339-014-8280-z. - DOI
LinkOut - more resources
Full Text Sources