Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Aug 14;8(51):28895-28908.
doi: 10.1039/c8ra03206h.

Mixed valency in ligand-bridged diruthenium frameworks: divergences and perspectives

Affiliations
Review

Mixed valency in ligand-bridged diruthenium frameworks: divergences and perspectives

Arijit Singha Hazari et al. RSC Adv. .

Abstract

The present review article illustrates the mixed valence aspects of ligand-bridged symmetric and unsymmetric diruthenium complexes beyond the textbook example of the Creutz-Taube ion as well as the Robin and Day classification by citing representative examples based on our recent observations. The consideration of varied coordination situations involving bridging and ancillary ligands of diverse electronic and steric demands extended important fundamental events including (i) the influence of ancillary ligands besides the bridge in the intermetallic coupling process, (ii) varying profile of the intervalence charge transfer (IVCT) transition in RuIIIRuII (d5d6) and RuIIIRuIV (d5d4) mixed valence set up, (iii) divergence between the electrochemical (K c = comproportionation constant) and electronic (IVCT) coupling and (iv) occurrence of the hybrid class II-class III situation. Furthermore, additional challenges due to the introduction of redox non-innocent ligands in assigning valence and spin distributions at the metal-ligand interface as well as in differentiating the emerging alternatives of the radical-derived state and the mixed valence situation along the redox chain have been addressed.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Oxygen evolving center (OEC) in photosystem II represents oxide-bridged mixed valent MnIII and MnIV ions. Reprinted from ref. 6 with the permission of Wiley VCH.
Fig. 2
Fig. 2. Alternate electronic forms of the Creutz–Taube ion.
Fig. 3
Fig. 3. Electron transfer series of tetrathiafulvalene.
Fig. 4
Fig. 4. Bridging ligand-mediated electron transfer and hole transfer pathways in mixed valence complexes.
Fig. 5
Fig. 5. Cyclic (black) and differential pulse (red) voltammograms of 2 in CH3CN (top). UV-vis-NIR spectroelectrochemistry in CH3CN and the sketch for IVCTT and IC transitions (bottom).
Fig. 6
Fig. 6. Shift in the ν(CO) frequency on moving from 5 → 5 and 5 → 52− in CH3CN.
Fig. 7
Fig. 7. Cyclic voltammograms of 82+ in CH3CN.
Fig. 8
Fig. 8. Cyclic voltammograms of 9 in CH3CN.
Fig. 9
Fig. 9. Electronic structural forms along the redox chain including the Mulliken spin density plot for 9+.
Fig. 10
Fig. 10. Cyclic voltammogram of 10 in CH3CN.
Fig. 11
Fig. 11. Electronic structural forms of 10n in accessible redox states. Boldface refers to the dominating forms.
Fig. 12
Fig. 12. Cyclic (black) and differential pulse (red) voltammograms in CH3CN.
Fig. 13
Fig. 13. Electronic structural forms of 11n and 12n.
Fig. 14
Fig. 14. Cyclic (black) and differential pulse (red) voltammograms of 13 in CH3CN.
Fig. 15
Fig. 15. UV-vis-NIR spectroelectrochemistry of 13n in CH3CN.
Fig. 16
Fig. 16. (a) Electronic structural forms of 13n with EPR for the S = 1/2 state in CH3CN. Boldface refers to the correct form. (b) Redox states of the para-quinone unit.
None
Arijit Singha Hazari
None
Arindam Indra
None
Goutam Kumar Lahiri

Similar articles

References

    1. Brown D. B., Mixed Valency Systems—Applications in Chemistry, Physics and Biology, ed. K. Prassides, Kluwer Academic Publishers, Dordrecht, 1991
    2. Nelsen S. F. Chem.–Eur. J. 2000;6:581. doi: 10.1002/(SICI)1521-3765(20000218)6:4<581::AID-CHEM581>3.0.CO;2-E. - DOI - PubMed
    3. Aguirre-Etcheverry P. O'Hare D. Chem. Rev. 2010;110:4839. doi: 10.1021/cr9003852. - DOI - PubMed
    4. Low P. J. Brown N. J. J. Cluster Sci. 2010;21:235. doi: 10.1007/s10876-010-0328-4. - DOI
    5. Chisholm M. H. Lear B. J. Chem. Soc. Rev. 2011;40:5254. doi: 10.1039/C1CS15061H. - DOI - PubMed
    6. Hildebrandt A. Lang H. Organometallics. 2013;32:5640. doi: 10.1021/om400453m. - DOI
    7. Kaim W. Klein A. Glöckle M. Acc. Chem. Res. 2000;33:755. doi: 10.1021/ar960067k. - DOI - PubMed
    1. Miller L. L. Mann K. R. Acc. Chem. Res. 1996;29:417. doi: 10.1021/ar9600446. - DOI
    2. Sun D.-L. Rosokha S. V. Lindeman S. V. Kochi J. K. J. Am. Chem. Soc. 2003;125:15950. doi: 10.1021/ja037867s. - DOI - PubMed
    3. Casado J. Takimiya K. Otsubo T. Ramirez F. J. Quirante J. J. Ortiz R. P. Gonzalez S. R. Oliva M. M. Navarrete J. T. L. J. Am. Chem. Soc. 2008;130:14028. doi: 10.1021/ja806207j. - DOI - PubMed
    4. Cornelis D. Franz E. Asselberghs I. Clays K. Verbiest T. Koeckelberghs G. J. Am. Chem. Soc. 2011;133:1317. doi: 10.1021/ja104978t. - DOI - PubMed
    5. Jagtap S. P. Mukhopadhyay S. Coropceanum V. Brizius G. L. Bredas J.-L. Collard D. M. J. Am. Chem. Soc. 2012;134:7176. doi: 10.1021/ja3019065. - DOI - PubMed
    6. Schneebeli S. T. Frasconi M. Liu Z. Wu Y. Gardner D. M. Strutt N. L. Cheng C. Carmieli R. Wasielewski M. R. Stoddart J. F. Angew. Chem., Int. Ed. 2013;52:13100. doi: 10.1002/anie.201307984. - DOI - PubMed
    1. Krewald V. Retegan M. Cox N. Messinger J. Lubitz W. DeBeer S. Neese F. Pantazis D. A. Chem. Sci. 2015;6:1676. doi: 10.1039/C4SC03720K. - DOI - PMC - PubMed
    2. Klauss A. Haumann M. Dau H. Proc. Natl. Acad. Sci. 2012;109:16035. doi: 10.1073/pnas.1206266109. - DOI - PMC - PubMed
    3. Roelofs T. A. Liang W. Latimer M. J. Cinco R. M. Rompel A. Andrews J. C. Sauer K. Yachandra V. K. Klein M. P. Proc. Natl. Acad. Sci. 1996;93:3335–3340. doi: 10.1073/pnas.93.8.3335. - DOI - PMC - PubMed
    1. Boelens R. Wever R. FEBS Lett. 1980;116:223. doi: 10.1016/0014-5793(80)80649-1. - DOI - PubMed
    2. Proshlyakov D. A. Pressler M. A. Babcock G. T. Proc. Natl. Acad. Sci. U. S. A. 1998;95:8020. doi: 10.1073/pnas.95.14.8020. - DOI - PMC - PubMed
    1. Beinert H. Holm R. H. Münck E. Science. 1997;277:653. doi: 10.1126/science.277.5326.653. - DOI - PubMed
    2. Subramanian S. Duin E. C. Fawcett S. E. J. Armstrong F. A. Meyer J. Johnson M. K. J. Am. Chem. Soc. 2015;137:4567. doi: 10.1021/jacs.5b01869. - DOI - PMC - PubMed
    3. Rumpel S. Siebel J. F. Diallo M. FarÀs C. Reijerse E. J. Lubitz W. ChemBioChem. 2015;16:1663–1669. doi: 10.1002/cbic.201500130. - DOI - PubMed
    4. Pandelia M.-E. Bykov D. Izsak R. Infossi P. Orticoni M.-T. G. Bill E. Neese F. Lubitz W. Proc. Natl. Acad. Sci. 2013;110:483. doi: 10.1073/pnas.1202575110. - DOI - PMC - PubMed