Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep 7;8(55):31496-31501.
doi: 10.1039/c8ra05983g. eCollection 2018 Sep 5.

The synthesis of HMF-based α-amino phosphonates via one-pot Kabachnik-Fields reaction

Affiliations

The synthesis of HMF-based α-amino phosphonates via one-pot Kabachnik-Fields reaction

Weigang Fan et al. RSC Adv. .

Abstract

The first use of biomass-derived HMF in the one-pot Kabachnik-Fields reaction is reported here. A wide range of furan-based α-amino phosphonates were prepared in moderate to excellent yields under mild, effective and environmentally-benign conditions: iodine as a non-metal catalyst, biobased 2-MeTHF as the solvent and room or moderate temperature. The hydroxymethyl group of HMF persists in the Kabachnik-Fields products, widening the scope of further modification and derivatization compared to those arising from furfural. Issues involving the diastereoselectivity and double Kabachnik-Fields condensation were also faced.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. The Kabachnik–Fields reaction of HMF and different amines.a,b aThe reaction was carried out with HMF (1 mmol), amine (1 mmol), diethyl phosphite (1.5 mmol) with I2 (5 mol%) in 2-MeTHF (2 mL), stirred at 25 °C for indicated time. bIsolated yield. cAt 50 °C.
Scheme 2
Scheme 2. The Kabachnik–Fields reaction of HMF and commercially available phosphites.
Scheme 3
Scheme 3. The double Kabachnik–Fields reaction.
Scheme 4
Scheme 4. The derivatizations on hydroxyl group.
Scheme 5
Scheme 5. Control experiments.

Similar articles

Cited by

References

    1. Mika L. T. Csefalvay E. Nemeth A. Chem. Rev. 2018;118:505. doi: 10.1021/acs.chemrev.7b00395. - DOI - PubMed
    2. Zhang Z. Song J. Han B. Chem. Rev. 2017;117:6834. doi: 10.1021/acs.chemrev.6b00457. - DOI - PubMed
    3. Chen S. S. Maneerung T. Tsang D. C. W. Ok Y. S. Wang C.-H. Chem. Eng. J. 2017;328:246. doi: 10.1016/j.cej.2017.07.020. - DOI
    4. Shylesh S. Gokhale A. A. Ho C. R. Bell A. T. Acc. Chem. Res. 2017;50:2589. doi: 10.1021/acs.accounts.7b00354. - DOI - PubMed
    5. de Vries J. G. Chem. Rec. 2016;16:2787. doi: 10.1002/tcr.201600102. - DOI - PubMed
    6. Wu L. Moteki T. Gokhale A. A. Flaherty D. W. Toste F. D. Chem. 2016;1:32. doi: 10.1016/j.chempr.2016.05.002. - DOI
    7. Besson M. Gallezot P. Pinel C. Chem. Rev. 2014;114:1827. doi: 10.1021/cr4002269. - DOI - PubMed
    8. Gallezot P. Chem. Soc. Rev. 2012;41:1538. doi: 10.1039/C1CS15147A. - DOI - PubMed
    1. de Vries J. G., in Adv. Heterocycl. Chem., ed. E. F. V. Scriven and C. A. Ramsden, Academic Press, 2017, vol. 121, p. 247
    2. Domínguez de María P. Guajardo N. ChemSusChem. 2017;10:4123. doi: 10.1002/cssc.201701583. - DOI - PubMed
    3. Hu L. Lin L. Wu Z. Zhou S. Liu S. Renewable Sustainable Energy Rev. 2017;74:230. doi: 10.1016/j.rser.2017.02.042. - DOI
    4. van Putten R.-J. van der Waal J. C. de Jong E. Rasrendra C. B. Heeres H. J. de Vries J. G. Chem. Rev. 2013;113:1499. doi: 10.1021/cr300182k. - DOI - PubMed
    5. Rosatella A. A. Simeonov S. P. Frade R. F. M. Afonso C. A. M. Green Chem. 2011;13:754. doi: 10.1039/C0GC00401D. - DOI
    6. Kucherov F. A. Romashov L. V. Galkin K. I. Ananikov V. P. ACS Sustainable Chem. Eng. 2018;6:8064. doi: 10.1021/acssuschemeng.8b00971. - DOI
    1. Biswas S. Dutta B. Mannodi-Kanakkithodi A. Clarke R. Song W. Ramprasad R. Suib S. L. Chem. Commun. 2017;53:11751. doi: 10.1039/C7CC06097A. - DOI - PubMed
    2. Gong W. Zheng K. Ji P. RSC Adv. 2017;7:34776. doi: 10.1039/C7RA05427K. - DOI
    3. Gui Z. Saravanamurugan S. Cao W. Schill L. Chen L. Qi Z. Riisager A. ChemistrySelect. 2017;2:6632. doi: 10.1002/slct.201701325. - DOI
    4. Li G. Sun Z. Yan Y. Zhang Y. Tang Y. ChemSusChem. 2017;10:494. doi: 10.1002/cssc.201601322. - DOI - PubMed
    5. Li J. Lv G. Lu B. Wang Y. Deng T. Hou X. Yang Y. Energy Technol. 2017;5:1429. doi: 10.1002/ente.201600715. - DOI
    6. Li Y.-M. Zhang X.-Y. Li N. Xu P. Lou W.-Y. Zong M.-H. ChemSusChem. 2017;10:304. doi: 10.1002/cssc.201700004. - DOI - PubMed
    7. McKenna S. M. Mines P. Law P. Kovacs-Schreiner K. Birmingham W. R. Turner N. J. Leimkuhler S. Carnell A. J. Green Chem. 2017;19:4660. doi: 10.1039/C7GC01696D. - DOI
    8. Mishra D. K. Lee H. J. Kim J. Lee H.-S. Cho J. K. Suh Y.-W. Yi Y. Kim Y. J. Green Chem. 2017;19:1619. doi: 10.1039/C7GC00027H. - DOI
    9. Wang Q. Hou W. Li S. Xie J. Li J. Zhou Y. Wang J. Green Chem. 2017;19:3820. doi: 10.1039/C7GC01116D. - DOI
    10. Xu S. Zhou P. Zhang Z. Yang C. Zhang B. Deng K. Bottle S. Zhu H. J. Am. Chem. Soc. 2017;139:14775. doi: 10.1021/jacs.7b08861. - DOI - PubMed
    11. Zhang H. Wu Q. Guo C. Wu Y. Wu T. ACS Sustainable Chem. Eng. 2017;5:3517. doi: 10.1021/acssuschemeng.7b00231. - DOI
    12. Li J. Liu J.-l. Liu H.-y. Xu G.-y. Zhang J.-j. Liu J.-x. Zhou G.-l. Li Q. Xu Z.-h. Fu Y. ChemSusChem. 2017;10:1436. doi: 10.1002/cssc.201700105. - DOI - PubMed
    1. Mohamed O. G. Khalil Z. G. Capon R. J. Org. Lett. 2018;20:377. doi: 10.1021/acs.orglett.7b03666. - DOI - PubMed
    2. Kumalaputri A. J. Randolph C. Otten E. Heeres H. J. Deuss P. J. ACS Sustainable Chem. Eng. 2018;6:3419. doi: 10.1021/acssuschemeng.7b03648. - DOI - PMC - PubMed
    3. Zhu M.-M. Tao L. Zhang Q. Dong J. Liu Y.-M. He H.-Y. Cao Y. Green Chem. 2017;19:3880. doi: 10.1039/C7GC01579H. - DOI
    4. Kucherov F. A. Galkin K. I. Gordeev E. G. Ananikov V. P. Green Chem. 2017;19:4858. doi: 10.1039/C7GC02211E. - DOI
    5. Galkin K. Kucherov F. Markov O. Egorova K. Posvyatenko A. Ananikov V. Molecules. 2017;22:2210. doi: 10.3390/molecules22122210. - DOI - PMC - PubMed
    6. Tšupova S. Rominger F. Rudolph M. Hashmi A. S. K. Green Chem. 2016;18:5800. doi: 10.1039/C6GC01622G. - DOI
    7. Sugimura H. Kikuchi M. Kato S. Sekita W. Sasaki I. Tetrahedron. 2016;72:7638. doi: 10.1016/j.tet.2016.10.026. - DOI
    8. Romashov L. V. Ananikov V. P. Org. Biomol. Chem. 2016;14:10593. doi: 10.1039/C6OB01731B. - DOI - PubMed
    9. Sowmiah S. Veiros L. F. Esperanca J. M. Rebelo L. P. Afonso C. A. Org. Lett. 2015;17:5244. doi: 10.1021/acs.orglett.5b02573. - DOI - PubMed
    10. Koh P. F. Loh T. P. Green Chem. 2015;17:3746. doi: 10.1039/C5GC00900F. - DOI
    11. Antonio J. P. M. Frade R. F. M. Santos F. M. F. Coelho J. A. S. Afonso C. A. M. Gois P. M. P. Trindade A. F. RSC Adv. 2014;4:29352. doi: 10.1039/C4RA03710C. - DOI
    1. Galkin K. I. Krivodaeva E. A. Romashov L. V. Zalesskiy S. S. Kachala V. V. Burykina J. V. Ananikov V. P. Angew. Chem., Int. Ed. 2016;55:8338. doi: 10.1002/anie.201602883. - DOI - PubMed