Organocatalytic sulfa-Michael/aldol cascade: constructing functionalized 2,5-dihydrothiophenes bearing a quaternary carbon stereocenter
- PMID: 35548804
- PMCID: PMC9086683
- DOI: 10.1039/c8ra04325f
Organocatalytic sulfa-Michael/aldol cascade: constructing functionalized 2,5-dihydrothiophenes bearing a quaternary carbon stereocenter
Abstract
A practical sulfa-Michael/aldol cascade reaction of 1,4-dithiane-2,5-diol and α-aryl-β-nitroacrylates has been developed, which allows efficient access to functionalized 2,5-dihydrothiophenes bearing a quaternary carbon stereocenter in moderate to good yields with high enantioselectivities.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures
Similar articles
-
Organocatalytic cascade sulfa-Michael/aldol reaction of β,β-disubstituted enones: enantioselective synthesis of tetrahydrothiophenes with a trifluoromethylated quaternary center.J Org Chem. 2013 Nov 1;78(21):11053-8. doi: 10.1021/jo4016024. Epub 2013 Oct 11. J Org Chem. 2013. PMID: 24079617
-
Stereoselective amine-thiourea-catalysed sulfa-Michael/nitroaldol cascade approach to 3,4,5-substituted tetrahydrothiophenes bearing a quaternary stereocenter.Beilstein J Org Chem. 2016 Apr 5;12:643-7. doi: 10.3762/bjoc.12.63. eCollection 2016. Beilstein J Org Chem. 2016. PMID: 27340455 Free PMC article.
-
One-Pot, Four-Step Organocatalytic Asymmetric Synthesis of Functionalized Nitrocyclopropanes.J Org Chem. 2015 Sep 18;80(18):9176-84. doi: 10.1021/acs.joc.5b01607. Epub 2015 Sep 9. J Org Chem. 2015. PMID: 26317611
-
Recent Advances in Organocatalyzed Asymmetric Sulfa-Michael Addition Triggered Cascade Reactions.Chem Rec. 2023 Jul;23(7):e202200258. doi: 10.1002/tcr.202200258. Epub 2023 Jan 3. Chem Rec. 2023. PMID: 36594608 Review.
-
From Three- to Six-Membered Heterocycles Bearing a Quaternary Stereocenter: an Asymmetric Organocatalytic Approach.Chem Rec. 2023 May;23(5):e202300066. doi: 10.1002/tcr.202300066. Epub 2023 Apr 12. Chem Rec. 2023. PMID: 37042434 Review.
References
-
- Rogers E. Araki H. Batory L. A. Mclnnis C. E. Njardarson J. T. J. Am. Chem. Soc. 2007;129:2768. doi: 10.1021/ja069059h. - DOI - PubMed
- McGarraugh P. G. Brenner S. E. Org. Lett. 2009;11:5654. doi: 10.1021/ol9024293. - DOI - PMC - PubMed
- Benetti S. De Risi C. Pollini G. P. Zanirato V. Chem. Rev. 2012;112:2129. doi: 10.1021/cr200298b. - DOI - PubMed
- De Risi C. Benetti S. Fogagnolo M. Bertolasi V. Tetrahedron Lett. 2013;54:283. doi: 10.1016/j.tetlet.2012.10.134. - DOI
- Zaghi A. Bernardi T. Bertolasi V. Bortolini O. Massi A. De Risi C. J. Org. Chem. 2015;80:9176. doi: 10.1021/acs.joc.5b01607. - DOI - PubMed
-
- Spagnol G. Heck M.-P. Nolan S. P. Mioskowski C. Org. Lett. 2002;4:1767. doi: 10.1021/ol025834w. - DOI - PubMed
- Minville J. Girardin M. Spino C. Can. J. Chem. 2007;85:603. doi: 10.1139/v07-091. - DOI
- Morita N. Krause N. Angew. Chem., Int. Ed. 2006;45:1897. doi: 10.1002/anie.200503846. - DOI - PubMed
- Krause N. Belting V. Deutsch C. Erdsack J. Fan H.-T. Gockel H. B. Hoffmann-Röder A. Morita N. Volz F. Pure Appl. Chem. 2008;80:1063.
- Tang J. Xu D.-Q. Xia A.-B. Wang Y.-F. Jiang J.-R. Luo S.-P. Xu X.-Y. Adv. Synth. Catal. 2010;352:2121. doi: 10.1002/adsc.201000245. - DOI
- Xiang Y. Song J. Zhang Y. Yang Y. D.-C. Guan Z. He Y.-H. J. Org. Chem. 2016;81:6042. doi: 10.1021/acs.joc.6b01132. - DOI - PubMed
LinkOut - more resources
Full Text Sources