Large differences in carbohydrate degradation and transport potential among lichen fungal symbionts
- PMID: 35551185
- PMCID: PMC9098629
- DOI: 10.1038/s41467-022-30218-6
Large differences in carbohydrate degradation and transport potential among lichen fungal symbionts
Abstract
Lichen symbioses are thought to be stabilized by the transfer of fixed carbon from a photosynthesizing symbiont to a fungus. In other fungal symbioses, carbohydrate subsidies correlate with reductions in plant cell wall-degrading enzymes, but whether this is true of lichen fungal symbionts (LFSs) is unknown. Here, we predict genes encoding carbohydrate-active enzymes (CAZymes) and sugar transporters in 46 genomes from the Lecanoromycetes, the largest extant clade of LFSs. All LFSs possess a robust CAZyme arsenal including enzymes acting on cellulose and hemicellulose, confirmed by experimental assays. However, the number of genes and predicted functions of CAZymes vary widely, with some fungal symbionts possessing arsenals on par with well-known saprotrophic fungi. These results suggest that stable fungal association with a phototroph does not in itself result in fungal CAZyme loss, and lends support to long-standing hypotheses that some lichens may augment fixed CO2 with carbon from external sources.
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures




Similar articles
-
Predicted Input of Uncultured Fungal Symbionts to a Lichen Symbiosis from Metagenome-Assembled Genomes.Genome Biol Evol. 2021 Apr 5;13(4):evab047. doi: 10.1093/gbe/evab047. Genome Biol Evol. 2021. PMID: 33693712 Free PMC article.
-
Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.BMC Genomics. 2013 Apr 23;14:274. doi: 10.1186/1471-2164-14-274. BMC Genomics. 2013. PMID: 23617724 Free PMC article.
-
A comparative genomic analysis of lichen-forming fungi reveals new insights into fungal lifestyles.Sci Rep. 2022 Jun 24;12(1):10724. doi: 10.1038/s41598-022-14340-5. Sci Rep. 2022. PMID: 35750715 Free PMC article.
-
Evolutionary biology of lichen symbioses.New Phytol. 2022 Jun;234(5):1566-1582. doi: 10.1111/nph.18048. Epub 2022 Mar 18. New Phytol. 2022. PMID: 35302240 Review.
-
3D biofilms: in search of the polysaccharides holding together lichen symbioses.FEMS Microbiol Lett. 2020 Mar 1;367(5):fnaa023. doi: 10.1093/femsle/fnaa023. FEMS Microbiol Lett. 2020. PMID: 32037451 Free PMC article. Review.
Cited by
-
An Antarctic lichen isolate (Cladonia borealis) genome reveals potential adaptation to extreme environments.Sci Rep. 2024 Jan 16;14(1):1342. doi: 10.1038/s41598-024-51895-x. Sci Rep. 2024. PMID: 38228797 Free PMC article.
-
Vertical and horizontal gene transfer shaped plant colonization and biomass degradation in the fungal genus Armillaria.Nat Microbiol. 2023 Sep;8(9):1668-1681. doi: 10.1038/s41564-023-01448-1. Epub 2023 Aug 7. Nat Microbiol. 2023. PMID: 37550506 Free PMC article.
-
De Novo Genome Assembly of Toniniopsis dissimilis (Ramalinaceae, Lecanoromycetes) from Long Reads Shows a Comparatively High Composition of Biosynthetic Genes Putatively Involved in Melanin Synthesis.Genes (Basel). 2024 Aug 5;15(8):1029. doi: 10.3390/genes15081029. Genes (Basel). 2024. PMID: 39202389 Free PMC article.
-
Metagenomics Shines Light on the Evolution of "Sunscreen" Pigment Metabolism in the Teloschistales (Lichen-Forming Ascomycota).Genome Biol Evol. 2023 Feb 3;15(2):evad002. doi: 10.1093/gbe/evad002. Genome Biol Evol. 2023. PMID: 36634008 Free PMC article.
-
Microbial occurrence and symbiont detection in a global sample of lichen metagenomes.PLoS Biol. 2024 Nov 7;22(11):e3002862. doi: 10.1371/journal.pbio.3002862. eCollection 2024 Nov. PLoS Biol. 2024. PMID: 39509454 Free PMC article.
References
-
- Schwendener S. Die Algentypen der Flechtengonidien. Basel: Universitaetsbuchdruckerei; 1869.
-
- Drew EA, Smith DC. Studies in the physiology of lichens. VII. The physiology of the Nostoc symbiont of Peltigera polydactyla compared with cultured and free-living forms. N. Phytologist. 1967;66:379–388. doi: 10.1111/j.1469-8137.1967.tb06017.x. - DOI
-
- Richardson DL, Hill DJ, Smith D. Lichen Physiology - XI. The role of the alga in determining the pattern of carbohydrate movement between lichen symbionts. N. Phytologist. 1968;67:469–486. doi: 10.1111/j.1469-8137.1968.tb05476.x. - DOI
-
- Smith, D. C. Mechanisms of nutrient movement between the lichen symbionts. In Cellular interactions in symbiosis and parasitism (eds Cook, C. B., Pappas, P. W. & Rudolph, E. D.). 197–227 (Ohio State University Press, 1980).
Publication types
MeSH terms
Substances
Associated data
LinkOut - more resources
Full Text Sources