Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct;39(5):2243-2257.
doi: 10.1007/s10565-022-09713-5. Epub 2022 May 13.

Urine-derived stem cells-extracellular vesicles ameliorate diabetic osteoporosis through HDAC4/HIF-1α/VEGFA axis by delivering microRNA-26a-5p

Affiliations

Urine-derived stem cells-extracellular vesicles ameliorate diabetic osteoporosis through HDAC4/HIF-1α/VEGFA axis by delivering microRNA-26a-5p

Dan Zhang et al. Cell Biol Toxicol. 2023 Oct.

Abstract

Critical roles of stem cell-extracellular vesicles (EVs) in the management of osteoporosis have been documented. Here, this study was designed to enlarge the research of the specific effects and underlying mechanism of urine-derived stem cells-EVs (USCs-EVs) on osteoporosis in diabetes rats. Firstly, miR-26a-5p and histone deacetylase 4 (HDAC4) expression in USCs of rats after diabetic osteoporosis (DOP) modeling induced by streptozotocin injection was determined, followed by study of their interaction. Then, USCs-EVs were co-cultured with osteogenic precursor cells, the effects of miRNA-26a-5p (miR-26a-5p) on osteoblasts, osteoclasts, bone mineralization deposition rate were evaluated. Meanwhile, the effect of USCs-EVs carrying miR-26a-5p on DOP rats was assessed. Elevated miR-26a-5p was seen in USCs-EVs which limited HDAC4 expression. Moreover, USCs-EVs delivered miR-26a-5p to osteogenic precursor cells, thereby promoting their differentiation, enhancing the activity of osteoblasts, and inhibiting the activity of osteoclasts, thereby preventing DOP through the activation of hypoxia inducible factor 1 subunit alpha (HIF-1α)/vascular endothelial growth factor A (VEGFA) pathway by repressing HDAC4. In a word, USCs-EVs-miR-26a-5p is a promising therapy for DOP by activating HIF-1α/VEGFA pathway through HDAC4 inhibition. 1. USCs-EVs-miR-26a-5p targeted HDAC4 and limited HDAC4 expression. 2. miR-26a-5p was delivered by USCs-EVs into osteoblast precursor cells. 3. USCs-EVs-miR-26a-5p promoted the differentiation of osteoblast precursor cells into osteoblasts. 4. miR-26a-5p delivered by USCs-EVs could inhibit HDAC4. 5. USCs-EVs-miR-26a-5p could prevent the pathogenesis of DOP via HIF-1α/VEGFA aix.

Keywords: Diabetes; Extracellular vesicles; HDAC4; HIF-1α; Histone deacetylase; Osteoporosis; Urine-derived stem cells; VEGFA; microRNA-26a-5p.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Aspray TJ, Hill TR. Osteoporosis and the Ageing Skeleton. Subcell Biochem. 2019;91:453–76. https://doi.org/10.1007/978-981-13-3681-2_16 . - DOI - PubMed
    1. Burdeyron P, Giraud S, Hauet T, Steichen C. Urine-derived stem/progenitor cells: A focus on their characterization and potential. World J Stem Cells. 2020;12(10):1080–96. https://doi.org/10.4252/wjsc.v12.i10.1080 . - DOI - PubMed - PMC
    1. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22. https://doi.org/10.1373/clinchem.2008.112797 . - DOI - PubMed
    1. Chen CY, Rao SS, Tan YJ, Luo MJ, Hu XK, Yin H, et al. Extracellular vesicles from human urine-derived stem cells prevent osteoporosis by transferring CTHRC1 and OPG. Bone Res. 2019a;7:18. https://doi.org/10.1038/s41413-019-0056-9 . - DOI - PubMed - PMC
    1. Chen R, Qiu H, Tong Y, Liao F, Hu X, Qiu Y, et al. MiRNA-19a-3p alleviates the progression of osteoporosis by targeting HDAC4 to promote the osteogenic differentiation of hMSCs. Biochem Biophys Res Commun. 2019b;516(3):666–72. https://doi.org/10.1016/j.bbrc.2019.06.083 . - DOI - PubMed

LinkOut - more resources