Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 21;7(17):14712-14722.
doi: 10.1021/acsomega.1c07363. eCollection 2022 May 3.

Synthesis of Succinimide-Linked Indazol-3-ols Derived from Maleimides under Rh(III) Catalysis

Affiliations

Synthesis of Succinimide-Linked Indazol-3-ols Derived from Maleimides under Rh(III) Catalysis

Ju Young Kang et al. ACS Omega. .

Abstract

The structural modification of N-aryl indazolols as tautomers of N-aryl indazolones has been established as a hot topic in pharmaceutics and medicinal chemistry. We herein disclose the rhodium(III)-catalyzed 1,4-addition reaction of maleimides with N-aryl indazol-3-ols, which provides the succinimide-bearing indazol-3-ol scaffolds with complete regioselectivity and a good functional group tolerance. Notably, the versatility of this protocol is demonstrated by the use of drug-molecule-linked and fluorescence-probe-linked maleimides.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Succinimide-containing bioactive molecules.
Scheme 1
Scheme 1. Installation of Succinimides via C–H Functionalization
(A) Installation of succnimides via C–H functionalization. (B) Indazol-3-ol-assisted incorporation of succinimides (this work).
Scheme 2
Scheme 2. Substrate Scope of Maleimides and N-Aryl Indazol-3-ols
Reaction conditions are as follows: 1a1n (0.2 mmol), 2a2p (0.4 mmol), [RhCp*Cl2]2 (2.5 mol %), AgSbF6 (10 mol %), PivOH (100 mol %), and acetone (1 mL) at 80 °C for 20 h under air in pressure tubes. Yield by flash column chromatography. 1a (0.6 mmol), 2l (0.2 mmol), [RhCp*Cl2]2 (5 mol %), AgSbF6 (20 mol %), and PivOH (200 mol %) were used. Bisalkylated adduct 3l was also obtained in a 12% yield. [RhCp*(OAc)2] (5 mol %) was used in the absence of AgSbF6 under otherwise identical conditions.
Scheme 3
Scheme 3. Gram-Scale Experiments
Scheme 4
Scheme 4. Mechanistic Investigation and Proposed Reaction Mechanism
Scheme 5
Scheme 5. Synthetic Transformations
Condition A: 5a (0.2 mmol), Et3SiH (3 equiv), Pd2(dba)2 (10 mol %), LiCl (50 mol %), and DMF at 80 °C for 24 h. Condition B: 5a (0.2 mmol), (p-CF3)Ph-B(OH)2 (2 equiv), Pd(PPh3)4 (10 mol %), K2CO3 (1 equiv), and DMF/EtOH (2:1) at 90 °C for 1 h. Condition C: 5a (0.2 mmol), benzimidazole (1.2 equiv), Pd(PPh3)4 (20 mol %), K2CO3 (2 equiv) and toluene at 110 °C for 20 h.
Scheme 6
Scheme 6. Synthesis of N-(quinolinyl) indazol-3-ol (1n)

Similar articles

Cited by

References

    1. Crider A. M.; Kolczynski T. M.; Yates K. M. Synthesis and Anticancer Activity of Nitrosourea Derivatives of Phensuximide. J. Med. Chem. 1980, 23, 324–326. 10.1021/jm00177a024. - DOI - PubMed
    2. Hirata Y.; Fujimori S.; Okada K. Effect of a New Aldose Reductase Inhibitor, 8′-Chloro-2′,3′-dihydrospiro [pyrrolidine-3,6′(5′H)-pyrrolo[1,2,3,-de] [1,4]bezoxazine]-2,5,5′-trione (ADN-138), on Delayed Motor Nerve Conduction Velocity in Streptozotocin-Diabetic Rats. Metabolism 1988, 37, 159–163. 10.1016/S0026-0495(98)90011-7. - DOI - PubMed
    3. Coulter D. A.; Huguenard J. R.; Prince D. A. Specific Petit Mal Anticonvulsants Reduce Calcium Currents in Thalamic Neurons. Neurosci. Lett. 1989, 98, 74–78. 10.1016/0304-3940(89)90376-5. - DOI - PubMed
    4. Wrobel J.; Dietrich A.; Woolson S. A.; Millen J.; McCaleb M.; Harrison M. C.; Hohman T. C.; Sredy J.; Sullivan D. Novel Spirosuccinimides with Incorporated Isoindolone and Benzisothiazole 1,1-Dioxide Moieties as Aldose Reductase Inhibitors and Antihyperglycemic Agents. J. Med. Chem. 1992, 35, 4613–4627. 10.1021/jm00102a016. - DOI - PubMed
    5. Bril V.; Hirose T.; Tomioka S.; Buchanan R. Ranirestat for the Management of Diabetic Sensorimotor Polyneuropathy. Diabetes Care 2009, 32, 1256–1260. 10.2337/dc08-2110. - DOI - PMC - PubMed
    1. For a selected review, see:Zhao Z.; Yue J.; Ji X.; Nian M.; Kang K.; Qiao H.; Zheng Z. Research Progress in Biological Activities of Succinimide Derivatives. Bioorg. Chem. 2021, 108, 104557.10.1016/j.bioorg.2020.104557. - DOI - PubMed
    1. For recent selected examples, see:

    2. Mishra N. K.; Sharma S.; Park J.; Han S.; Kim I. S. Recent Advances in Catalytic C(sp2)-H Allylation Reactions. ACS Catal. 2017, 7, 2821–2847. 10.1021/acscatal.7b00159. - DOI
    3. Sambiagio C.; Schönbauer D.; Blieck R.; Dao-Huy T.; Pototschnig G.; Schaaf P.; Wiesinger T.; Zia M. F.; Wencel-Delord J.; Besset T.; Maes B. U. W.; Schnürch M. A Comprehensive Overview of Directing Groups Applied in Metal-Catalysed C–H Functionalisation Chemistry. Chem. Soc. Rev. 2018, 47, 6603–6743. 10.1039/C8CS00201K. - DOI - PMC - PubMed
    4. Lee H.; Kang D.; Han S. H.; Chun R.; Pandey A. K.; Mishra N. K.; Hong S.; Kim I. S. Allylic Acetals as Acrolein Oxonium Precursors in Tandem C–H Allylation and [3 + 2] Dipolar Cycloaddition. Angew. Chem., Int. Ed. 2019, 58, 9470–9474. 10.1002/anie.201903983. - DOI - PubMed
    5. Zhang Z.; Zhou X.-Y.; Wu J.-G.; Song L.; Yu D.-G. Transition-Metal-Free Lactamization of C(sp3)–H Bonds with CO2: Facile Generation of Pyrido[1,2-a]pyrimidin-4-ones. Green Chem. 2020, 22, 28–32. 10.1039/C9GC03659H. - DOI
    6. Rajamanickam S.; Saraswat M.; Venkataramani S.; Patel B. K. Intermolecular CDC Amination of Remote and Proximal Unactivated Csp3–H Bonds through Intrinsic Substrate Reactivity – Expanding towards a Traceless Directing Group. Chem. Sci. 2021, 12, 15318–15328. 10.1039/D1SC04365J. - DOI - PMC - PubMed
    1. For a selected review, see:

    2. Manoharan R.; Jeganmohan M. Alkylation, Annulation, and Alkenylation of Organic Molecules with Maleimides by Transition-Metal-Catalyzed C-H Bond Activation. Asian J. Org. Chem. 2019, 8, 1949–1969. 10.1002/ajoc.201900054. - DOI
    3. Kumar S. V.; Banerjee S.; Punniyamurthy T. Transition Metal-Catalyzed Coupling of Heterocyclic Alkenes via C–H Functionalization: Recent Trends and Applications. Org. Chem. Front. 2020, 7, 1527–1569. 10.1039/D0QO00279H. - DOI
    1. For recent examples, see:

    2. Zhou Y.; Liang H.; Sheng Y.; Wang S.; Gao Y.; Zhan L.; Zheng Z.; Yang M.; Liang G.; Zhou J.; Deng J.; Song Z. Ruthenium(II)-Catalyzed C–H Activation of Chromones with Maleimides to Synthesize Succinimide/Maleimide-Containing Chromones. J. Org. Chem. 2020, 85, 9230–9243. 10.1021/acs.joc.0c01223. - DOI - PubMed
    3. Cho Y. S.; Kim H. D.; Kim E.; Han S. H.; Han S. B.; Mishra N. K.; Jung Y. H.; Jeong T.; Kim I. S. Direct Integration of Phthalazinone and Succinimide Scaffolds via Rh(III)-Catalyzed C–H Functionalization. Asian J. Org. Chem. 2021, 10, 202–209. 10.1002/ajoc.202000454. - DOI
    4. An W.; Lee S. H.; Kim D.; Oh H.; Kim S.; Byun Y.; Kim H. J.; Mishra N. K.; Kim I. S. Site-Selective C8-Alkylation of Quinoline N-Oxides with Maleimides under Rh(III) Catalysis. J. Org. Chem. 2021, 86, 7579–7587. 10.1021/acs.joc.1c00612. - DOI - PubMed
    5. Liu S.-L.; Shi Y.; Xue C.; Zhang L.; Zhou L.; Song M.-P. Maleimides in Directing Group-Controlled Transition-Metal-Catalyzed Selective C–H Alkylation. Eur. J. Org. Chem. 2021, 2021, 5862–5879. 10.1002/ejoc.202101262. - DOI
    6. Ghosh S.; Khandelia T.; Patel B. K. Solvent-Switched Manganese(I)-Catalyzed Regiodivergent Distal vs Proximal C–H Alkylation of Imidazopyridine with Maleimide. Org. Lett. 2021, 23, 7370–7375. 10.1021/acs.orglett.1c02536. - DOI - PubMed