Synthesis of Succinimide-Linked Indazol-3-ols Derived from Maleimides under Rh(III) Catalysis
- PMID: 35557672
- PMCID: PMC9088931
- DOI: 10.1021/acsomega.1c07363
Synthesis of Succinimide-Linked Indazol-3-ols Derived from Maleimides under Rh(III) Catalysis
Abstract
The structural modification of N-aryl indazolols as tautomers of N-aryl indazolones has been established as a hot topic in pharmaceutics and medicinal chemistry. We herein disclose the rhodium(III)-catalyzed 1,4-addition reaction of maleimides with N-aryl indazol-3-ols, which provides the succinimide-bearing indazol-3-ol scaffolds with complete regioselectivity and a good functional group tolerance. Notably, the versatility of this protocol is demonstrated by the use of drug-molecule-linked and fluorescence-probe-linked maleimides.
© 2022 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures







Similar articles
-
Synthesis of spirosuccinimides via annulative cyclization between N-aryl indazolols and maleimides under rhodium(III) catalysis.Chem Commun (Camb). 2021 Oct 19;57(83):10947-10950. doi: 10.1039/d1cc04599g. Chem Commun (Camb). 2021. PMID: 34604876
-
Site-Selective C8-Alkylation of Quinoline N-Oxides with Maleimides under Rh(III) Catalysis.J Org Chem. 2021 Jun 4;86(11):7579-7587. doi: 10.1021/acs.joc.1c00612. Epub 2021 May 5. J Org Chem. 2021. PMID: 33949193
-
Synthesis of Succinimide Spiro-Fused Sultams from the Reaction of N-(Phenylsulfonyl)acetamides with Maleimides via C(sp2)-H Activation.J Org Chem. 2021 Aug 6;86(15):10330-10342. doi: 10.1021/acs.joc.1c01048. Epub 2021 Jul 21. J Org Chem. 2021. PMID: 34288686
-
Regioselective hydroarylation and arylation of maleimides with indazoles via a Rh(iii)-catalyzed C-H activation.Org Biomol Chem. 2020 Apr 29;18(16):3093-3097. doi: 10.1039/d0ob00353k. Org Biomol Chem. 2020. PMID: 32242885
-
Rhodium-Catalyzed Regioselective C3Ar Functionalization of Tyrosines with Maleimides and Its Late-Stage Peptide Exemplification.Org Lett. 2023 Oct 27;25(42):7673-7677. doi: 10.1021/acs.orglett.3c02994. Epub 2023 Oct 18. Org Lett. 2023. PMID: 37853547
Cited by
-
Balanites aegyptiaca leaf extract-mediated synthesis of silver nanoparticles and their catalytic dye degradation and antifungal efficacy.Front Bioeng Biotechnol. 2022 Oct 4;10:977101. doi: 10.3389/fbioe.2022.977101. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 36267455 Free PMC article.
References
-
- Crider A. M.; Kolczynski T. M.; Yates K. M. Synthesis and Anticancer Activity of Nitrosourea Derivatives of Phensuximide. J. Med. Chem. 1980, 23, 324–326. 10.1021/jm00177a024. - DOI - PubMed
- Hirata Y.; Fujimori S.; Okada K. Effect of a New Aldose Reductase Inhibitor, 8′-Chloro-2′,3′-dihydrospiro [pyrrolidine-3,6′(5′H)-pyrrolo[1,2,3,-de] [1,4]bezoxazine]-2,5,5′-trione (ADN-138), on Delayed Motor Nerve Conduction Velocity in Streptozotocin-Diabetic Rats. Metabolism 1988, 37, 159–163. 10.1016/S0026-0495(98)90011-7. - DOI - PubMed
- Coulter D. A.; Huguenard J. R.; Prince D. A. Specific Petit Mal Anticonvulsants Reduce Calcium Currents in Thalamic Neurons. Neurosci. Lett. 1989, 98, 74–78. 10.1016/0304-3940(89)90376-5. - DOI - PubMed
- Wrobel J.; Dietrich A.; Woolson S. A.; Millen J.; McCaleb M.; Harrison M. C.; Hohman T. C.; Sredy J.; Sullivan D. Novel Spirosuccinimides with Incorporated Isoindolone and Benzisothiazole 1,1-Dioxide Moieties as Aldose Reductase Inhibitors and Antihyperglycemic Agents. J. Med. Chem. 1992, 35, 4613–4627. 10.1021/jm00102a016. - DOI - PubMed
- Bril V.; Hirose T.; Tomioka S.; Buchanan R. Ranirestat for the Management of Diabetic Sensorimotor Polyneuropathy. Diabetes Care 2009, 32, 1256–1260. 10.2337/dc08-2110. - DOI - PMC - PubMed
-
-
For recent selected examples, see:
- Mishra N. K.; Sharma S.; Park J.; Han S.; Kim I. S. Recent Advances in Catalytic C(sp2)-H Allylation Reactions. ACS Catal. 2017, 7, 2821–2847. 10.1021/acscatal.7b00159. - DOI
- Sambiagio C.; Schönbauer D.; Blieck R.; Dao-Huy T.; Pototschnig G.; Schaaf P.; Wiesinger T.; Zia M. F.; Wencel-Delord J.; Besset T.; Maes B. U. W.; Schnürch M. A Comprehensive Overview of Directing Groups Applied in Metal-Catalysed C–H Functionalisation Chemistry. Chem. Soc. Rev. 2018, 47, 6603–6743. 10.1039/C8CS00201K. - DOI - PMC - PubMed
- Lee H.; Kang D.; Han S. H.; Chun R.; Pandey A. K.; Mishra N. K.; Hong S.; Kim I. S. Allylic Acetals as Acrolein Oxonium Precursors in Tandem C–H Allylation and [3 + 2] Dipolar Cycloaddition. Angew. Chem., Int. Ed. 2019, 58, 9470–9474. 10.1002/anie.201903983. - DOI - PubMed
- Zhang Z.; Zhou X.-Y.; Wu J.-G.; Song L.; Yu D.-G. Transition-Metal-Free Lactamization of C(sp3)–H Bonds with CO2: Facile Generation of Pyrido[1,2-a]pyrimidin-4-ones. Green Chem. 2020, 22, 28–32. 10.1039/C9GC03659H. - DOI
- Rajamanickam S.; Saraswat M.; Venkataramani S.; Patel B. K. Intermolecular CDC Amination of Remote and Proximal Unactivated Csp3–H Bonds through Intrinsic Substrate Reactivity – Expanding towards a Traceless Directing Group. Chem. Sci. 2021, 12, 15318–15328. 10.1039/D1SC04365J. - DOI - PMC - PubMed
-
-
-
For a selected review, see:
- Manoharan R.; Jeganmohan M. Alkylation, Annulation, and Alkenylation of Organic Molecules with Maleimides by Transition-Metal-Catalyzed C-H Bond Activation. Asian J. Org. Chem. 2019, 8, 1949–1969. 10.1002/ajoc.201900054. - DOI
- Kumar S. V.; Banerjee S.; Punniyamurthy T. Transition Metal-Catalyzed Coupling of Heterocyclic Alkenes via C–H Functionalization: Recent Trends and Applications. Org. Chem. Front. 2020, 7, 1527–1569. 10.1039/D0QO00279H. - DOI
-
-
-
For recent examples, see:
- Zhou Y.; Liang H.; Sheng Y.; Wang S.; Gao Y.; Zhan L.; Zheng Z.; Yang M.; Liang G.; Zhou J.; Deng J.; Song Z. Ruthenium(II)-Catalyzed C–H Activation of Chromones with Maleimides to Synthesize Succinimide/Maleimide-Containing Chromones. J. Org. Chem. 2020, 85, 9230–9243. 10.1021/acs.joc.0c01223. - DOI - PubMed
- Cho Y. S.; Kim H. D.; Kim E.; Han S. H.; Han S. B.; Mishra N. K.; Jung Y. H.; Jeong T.; Kim I. S. Direct Integration of Phthalazinone and Succinimide Scaffolds via Rh(III)-Catalyzed C–H Functionalization. Asian J. Org. Chem. 2021, 10, 202–209. 10.1002/ajoc.202000454. - DOI
- An W.; Lee S. H.; Kim D.; Oh H.; Kim S.; Byun Y.; Kim H. J.; Mishra N. K.; Kim I. S. Site-Selective C8-Alkylation of Quinoline N-Oxides with Maleimides under Rh(III) Catalysis. J. Org. Chem. 2021, 86, 7579–7587. 10.1021/acs.joc.1c00612. - DOI - PubMed
- Liu S.-L.; Shi Y.; Xue C.; Zhang L.; Zhou L.; Song M.-P. Maleimides in Directing Group-Controlled Transition-Metal-Catalyzed Selective C–H Alkylation. Eur. J. Org. Chem. 2021, 2021, 5862–5879. 10.1002/ejoc.202101262. - DOI
- Ghosh S.; Khandelia T.; Patel B. K. Solvent-Switched Manganese(I)-Catalyzed Regiodivergent Distal vs Proximal C–H Alkylation of Imidazopyridine with Maleimide. Org. Lett. 2021, 23, 7370–7375. 10.1021/acs.orglett.1c02536. - DOI - PubMed
-
LinkOut - more resources
Full Text Sources