Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Sep 15:622:871-879.
doi: 10.1016/j.jcis.2022.04.095. Epub 2022 Apr 22.

In situ electrochemical reductive construction of metal oxide/metal-organic framework heterojunction nanoarrays for hydrogen peroxide sensing

Affiliations

In situ electrochemical reductive construction of metal oxide/metal-organic framework heterojunction nanoarrays for hydrogen peroxide sensing

Lipei Jiang et al. J Colloid Interface Sci. .

Abstract

Transition metal oxide/metal-organic framework heterojunctions (TMO@MOF) that combine the large specific surface area of MOFs with TMOs' high catalytic activity and multifunctionality, show excellent performances in various catalytic reactions. Nevertheless, the present preparation approaches of TMO@MOF heterojunctions are too complex to control, stimulating interests in developing simple and highly controllable methods for preparing such heterojunction. In this study, we propose an in situ electrochemical reduction approach to fabricating Cu2O nanoparticle (NP)@CuHHTP heterojunction nanoarrays with a graphene-like conductive MOF CuHHTP (HHTP is 2,3,6,7,10,11-hexahydroxytriphenylene). We have discovered that size-controlled Cu2O nanoparticles could be in situ grown on CuHHTP by applying different electrochemical reduction potentials. Also, the obtained Cu2O NP@CuHHTP heterojunction nanoarrays show high H2O2 sensitivity of 8150.6 μA·mM-1·cm2 and satisfactory detection performances in application of measuring H2O2 concentrations in urine and serum samples. This study offers promising guidance for the synthesis of MOF-based heterojunctions for early cancer diagnosis.

Keywords: Early cancer diagnosis; H(2)O(2) sensing; In situ electrochemical reduction; Metal–organic frameworks; TMO@MOF heterojunction.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources