Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Apr 30;14(9):2238.
doi: 10.3390/cancers14092238.

What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine

Affiliations
Review

What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine

María Cascallar et al. Cancers (Basel). .

Abstract

Cancer causes millions of deaths each year and thus urgently requires the development of new therapeutic strategies. Nanotechnology-based anticancer therapies are a promising approach, with several formulations already approved and in clinical use. The evaluation of these therapies requires efficient in vivo models to study their behavior and interaction with cancer cells, and to optimize their properties to ensure maximum efficacy and safety. In this way, zebrafish is an important candidate due to its high homology with the human genoma, its large offspring, and the ease in developing specific cancer models. The role of zebrafish as a model for anticancer therapy studies has been highly evidenced, allowing researchers not only to perform drug screenings but also to evaluate novel therapies such as immunotherapies and nanotherapies. Beyond that, zebrafish can be used as an "avatar" model for performing patient-derived xenografts for personalized medicine. These characteristics place zebrafish in an attractive position as a role model for evaluating novel therapies for cancer treatment, such as nanomedicine.

Keywords: cancer; drug screening; nanomedicine; personalized medicine; xenograft; zebrafish.

PubMed Disclaimer

Conflict of interest statement

M.d.l.F. is the co-founder and CEO of DIVERSA technologies. A.J.V.-R. is the co-founder and COO of DIVERSA technologies.

Figures

Figure 1
Figure 1
Most common carcinogenic substances used for tumor induction in zebrafish.
Figure 2
Figure 2
Reverse genetics strategies (in blue) and their respective examples of altered genes and the associated tumor types.
Figure 3
Figure 3
Sites for heterotopic transplantation of tumor cells (in red) in zebrafish. Modified from Servier Medical Art (https://smart.servier.com; accessed on 3 March 2022), licensed by a Creative Commons Attribution 3.0 Unported License, and Lizzy Griffiths.
Figure 4
Figure 4
Zebrafish as a model for evaluation of different cancer treatments. Modified from Servier Medical Art (https://smart.servier.com; accessed on 3 March 2022), licensed by a Creative Commons Attribution 3.0 Unported License, and Lizzy Griffiths.

Similar articles

Cited by

References

    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 2020;70:7–30. doi: 10.3322/caac.21590. - DOI - PubMed
    1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. - DOI - PubMed
    1. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. - DOI - PubMed
    1. Dillekås H., Rogers M.S., Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019;8:5574–5576. doi: 10.1002/cam4.2474. - DOI - PMC - PubMed
    1. Ilic M., Ilic I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016;22:9694–9705. doi: 10.3748/wjg.v22.i44.9694. - DOI - PMC - PubMed

LinkOut - more resources