Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022:1365:75-95.
doi: 10.1007/978-981-16-8387-9_6.

ILCs and Allergy

Affiliations

ILCs and Allergy

Hiroki Kabata et al. Adv Exp Med Biol. 2022.

Abstract

The recent discovery of new innate lymphoid cells (ILCs) has revolutionized the field of allergies. Since most allergic diseases induce a type 2 immune response, Th2 cells, which produce IL-4, IL-5, and IL-13 in an antigen-dependent manner, in addition to basophils and mast cells which are activated by antigen-specific IgE, are thought to play a major role in the pathogenesis. However, since group 2 innate lymphoid cells (ILC2s) produce type 2 cytokines (i.e., IL-2, IL-4, IL-5, IL-6, IL-9, IL-13, GM-CSF, and amphiregulin) in response to various cytokines, including IL-33 in the surrounding environment, the possibility has emerged that there are two types of allergies: allergies induced in an antigen-dependent manner by Th2 cells and allergies induced in an antigen-independent manner by ILC2s. In order to make an impact on the increasing incidence of allergic diseases in the world, it is essential to research and develop new treatments that focus not only on Th2 cells but also on ILC2s. In this chapter, the role of ILCs in allergic diseases, which has rapidly changed with the discovery of ILCs, is discussed, focusing mainly on ILC2s.

Keywords: Allergic conjunctivitis; Allergic rhinitis; Asthma; Atopic dermatitis; Chronic rhinosinusitis; Contact hypersensitivity; Food allergy.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011;12(11):1045–54. - PubMed - PMC - DOI
    1. Yudanin NA, Schmitz F, Flamar AL, Thome JJC, Tait Wojno E, Moeller JB, et al. Spatial and temporal mapping of human innate lymphoid cells reveals elements of tissue specificity. Immunity. 2019;50(2):505–19. - PubMed - PMC - DOI
    1. Marquardt N, Kekalainen E, Chen P, Kvedaraite E, Wilson JN, Ivarsson MA, et al. Human lung natural killer cells are predominantly comprised of highly differentiated hypofunctional CD69(−)CD56(dim) cells. J Allergy Clin Immunol. 2017;139(4):1321–30. - PubMed - DOI
    1. Silver JS, Kearley J, Copenhaver AM, Sanden C, Mori M, Yu L, et al. Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol. 2016;17(6):626–35. - PubMed - PMC - DOI
    1. Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20(1):54–61. - PubMed - DOI

LinkOut - more resources