Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun:221:106850.
doi: 10.1016/j.cmpb.2022.106850. Epub 2022 May 2.

Magnetohydrodynamic blood flow study in stenotic coronary artery using lattice Boltzmann method

Affiliations

Magnetohydrodynamic blood flow study in stenotic coronary artery using lattice Boltzmann method

Ikram Cherkaoui et al. Comput Methods Programs Biomed. 2022 Jun.

Abstract

Background and objective: Cardiovascular diseases such as atherosclerosis are the first engender of death in the world. The malfunctioning of cardiovascular system is attributed mainly to hemodynamics. However, blood magnetic properties are of major haemodynamic interest, with significant clinical applications. The aim of this work is to study numerically the effect of high magnetic field on blood flow in stenotic artery.

Methods: In this paper, a double population D2Q9 lattice Boltzmann model is proposed. Velocity and magnetic field are both solved using Lattice Boltzmann method with single relaxation time. Blood is considered homogeneous and Newtonian bio-magnetic fluid. The results of the proposed model are compared and validated by recent numerical and experimental studies in the literature and show good agreement. In this study, simulations are carried out for both hydrodynamics and magneto-hydrodynamics. For the magneto-hydrodynamic case, five values of Hartmann number of 10, 30, 50, 75 and 100 at Reynolds number of 400, 600 and 800 are investigated Results: The results show that velocity and recirculation zone increase with the increase of the degree of stenosis and Reynolds number. In addition, a considerable decrease in velocity, recirculation zones and pressure drop across the stenotic artery is noticed with the increase of Hartmann number.

Conclusion: The suggested model is found to be effective and accurate in the treatment of magneto-hydrodynamic blood flow in stenotic artery. The found results can be used by clinicians in the treatment of certain cardiovascular disorders and in regulating blood flow movement, especially during surgical procedures.

Keywords: Blood flow; Lattice Boltzmann approach; Magnetic field; Stenosis magnetohydrodynamic MHD.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources