Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jul 15:183:56-71.
doi: 10.1016/j.plaphy.2022.04.031. Epub 2022 May 7.

Exploring epitranscriptomics for crop improvement and environmental stress tolerance

Affiliations
Review

Exploring epitranscriptomics for crop improvement and environmental stress tolerance

Xiangbo Yang et al. Plant Physiol Biochem. .

Abstract

Climate change and stressful environmental conditions severely hamper crop growth, development and yield. Plants respond to environmental perturbations, through their plasticity provided by key-genes, governed at post-/transcriptional levels. Gene-regulation in plants is a multilevel process controlled by diverse cellular entities that includes transcription factors (TF), epigenetic regulators and non-coding RNAs beside others. There are successful studies confirming the role of epigenetic modifications (DNA-methylation/histone-modifications) in gene expression. Recent years have witnessed emergence of a highly specialized field the "Epitranscriptomics". Epitranscriptomics deals with investigating post-transcriptional RNA chemical-modifications present across the life forms that change structural, functional and biological characters of RNA. However, deeper insights on of epitranscriptomic modifications, with >140 types known so far, are to be understood fully. Researchers have identified epitranscriptome marks (writers, erasers and readers) and mapped the site-specific RNA modifications (m6A, m5C, 3' uridylation, etc.) responsible for fine-tuning gene expression in plants. Simultaneous advancement in sequencing platforms, upgraded bioinformatic tools and pipelines along with conventional labelled techniques have further given a statistical picture of these epitranscriptomic modifications leading to their potential applicability in crop improvement and developing climate-smart crops. We present herein the insights on epitranscriptomic machinery in plants and how epitranscriptome and epitranscriptomic modifications underlying plant growth, development and environmental stress responses/adaptations. Third-generation sequencing technology, advanced bioinformatics tools and databases being used in plant epitranscriptomics are also discussed. Emphasis is given on potential exploration of epitranscriptome engineering for crop-improvement and developing environmental stress tolerant plants covering current status, challenges and future directions.

Keywords: Environmental stress; Epigenetics; Epitranscriptome; High-throughput sequencing; Methylation; Post-transcriptional regulations; RNA Modifications.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources