Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 14;12(1):7984.
doi: 10.1038/s41598-022-11810-8.

Spatial-dependent quantum dot-photon entanglement via tunneling effect

Affiliations

Spatial-dependent quantum dot-photon entanglement via tunneling effect

Yaser Delir Ghaleh Joughi et al. Sci Rep. .

Abstract

Utilizing the vortex beams, we investigate the entanglement between the triple-quantum dot molecule and its spontaneous emission field. We present the spatially dependent quantum dot-photon entanglement created by Laguerre-Gaussian (LG) fields. The degree of position-dependent entanglement (DEM) is controlled by the angular momentum of the LG light and the quantum tunneling effect created by the gate voltage. Various spatial-dependent entanglement distribution is reached just by the magnitude and the sign of the orbital angular momentum (OAM) of the optical vortex beam.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
A four-level quantum dot molecule's band diagram. A triple quantum dot molecule is made up of three dots (“QD 1,” “QD 2,” and “QD 3”) with different tunneling rates TA and TB. The corresponding energy level structure is denoted by levels 1, 2,3, and 4.
Figure 2
Figure 2
(a) DEM plots as a function of TA and TB. Parameters are Ω1=3γ, and Ω2=7.5γ. (b) DEM plots as a function of Ω1 and Ω2 for TA=2γ, and TB=7γ. (c) Evolution of the population distribution a function of normalized time tγ for Ω1=3γ,Ω2=7.5γ, TA=2γ, and TB=7γ. Other parameters are δ=Δ1=Δ2=0 and ω43=0.6γ.
Figure 3
Figure 3
Intensity profiles of applied LG fields Ω1 (a) and Ω2 (b). DEM density plots as a function of x–y (c), and population distribution as a function of x (y = 0) (d). Parameters are TA=2γ, and TB=7γ, p=1,w0=2mm,Cpl=1,λ=532×10-9m,I0=10γ, δ=Δ1=Δ2=0 and ω43=0.6γ. The parameter y represents the population distribution in presented levels.
Figure 4
Figure 4
DEM density plots as a function of x and y for different modes for li =-2,+2 i=1,2. Parameters are p=1,w0=2mm,Cpl=1,λ=532×10-9m,I0=10γ,δ=Δ1=Δ2=0,ω43=0.6γ,TA=2γandTB=7γ.
Figure 5
Figure 5
Steady-state behavior of population versus x (y = 0) for l2 = 2 and l1 =  − 1 (a), l2 = 1 and l1 = 1 (b) and l2 =  − 2 and l1 =  − 1 (c). Parameters are p=1,w0=2mm,Cpl=1,λ=53210-9m,I0=10γ,δ=Δ1=Δ2=0,ω43=0.6γ,TA=2γ,andTB=7γ.
Figure 6
Figure 6
Steady-state population distribution as a function of x (y = 0) (a, c), and DEM density plots as a function of x and y (b, d) for TA=2γ,andTB=7γ (a, b) and TA=6γ,andTB=1γ. Other parameters are l2=-2,l1=-1,p=1,w0=2mm,Cpl=1,λ=532×10-9m,I0=10γ,δ=Δ1=Δ2=0,andω43=0.6γ.

Similar articles

References

    1. Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935;47:777. doi: 10.1103/PhysRev.47.777. - DOI
    1. O’Brien JL. Optical quantum computing. Science (80-.). 2007;318:1567. doi: 10.1126/science.1142892. - DOI - PubMed
    1. Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters WK. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1993;70:1895. doi: 10.1103/PhysRevLett.70.1895. - DOI - PubMed
    1. Boschi D, Branca S, De Martini F, Hardy L, Popescu S. Experimental realization of teleporting an unknown pure Quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 1998;80:1121. doi: 10.1103/PhysRevLett.80.1121. - DOI
    1. Ursin R, Zeilinger A, Lindenthal M, Aspelmeyer M, Jennewein T, Walther P, Kaltenbaek R. Communications quantum teleportation across the danube. Nature. 2004;430:849. doi: 10.1038/430849a. - DOI - PubMed