Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Jan;115(1):207-13.
doi: 10.1093/genetics/115.1.207.

Simulating evolution by gene duplication

Simulating evolution by gene duplication

T Ohta. Genetics. 1987 Jan.

Abstract

By considering the recent finding that unequal crossing over and other molecular interactions are contributing to the evolution of multigene families, a model of the origin of repetitive genes was studied by Monte Carlo simulations. Starting from a single gene copy, how genetic systems evolve was examined under unequal crossing over, random drift and natural selection. Both beneficial and deteriorating mutations were incorporated, and the latter were assumed to occur ten times more frequently than the former. Positive natural selection favors those chromosomes with more beneficial mutations in redundant copies than others in the population, but accumulation of deteriorating mutations (pseudogenes) have no effect on fitness so long as there remains a functional gene. The results imply the following: Positive natural selection is needed in order to acquire gene families with new functions. Without it, too many pseudogenes accumulate before attaining a functional gene family. There is a large fluctuation in the outcome even if parameters are the same. When unequal crossing over occurs more frequently, the system evolves more rapidly. It was also shown, under realistic values of parameters, that the genetic load for acquiring a new gene is not as large as J.B.S. Haldane suggested, but not so small as in a model in which a system for selection started from already redundant genes.

PubMed Disclaimer

References

    1. Genetics. 1964 Apr;49:725-38 - PubMed
    1. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2143-7 - PubMed
    1. Cell. 1979 Jun;17(2):449-57 - PubMed
    1. Science. 1936 May 29;83(2161):528-30 - PubMed
    1. Theor Popul Biol. 1983 Apr;23(2):216-40 - PubMed

Publication types