Prediction of gestational age using urinary metabolites in term and preterm pregnancies
- PMID: 35577875
- PMCID: PMC9110694
- DOI: 10.1038/s41598-022-11866-6
Prediction of gestational age using urinary metabolites in term and preterm pregnancies
Erratum in
-
Author Correction: Prediction of gestational age using urinary metabolites in term and preterm pregnancies.Sci Rep. 2022 Nov 17;12(1):19753. doi: 10.1038/s41598-022-23715-7. Sci Rep. 2022. PMID: 36396676 Free PMC article. No abstract available.
Abstract
Assessment of gestational age (GA) is key to provide optimal care during pregnancy. However, its accurate determination remains challenging in low- and middle-income countries, where access to obstetric ultrasound is limited. Hence, there is an urgent need to develop clinical approaches that allow accurate and inexpensive estimations of GA. We investigated the ability of urinary metabolites to predict GA at time of collection in a diverse multi-site cohort of healthy and pathological pregnancies (n = 99) using a broad-spectrum liquid chromatography coupled with mass spectrometry (LC-MS) platform. Our approach detected a myriad of steroid hormones and their derivatives including estrogens, progesterones, corticosteroids, and androgens which were associated with pregnancy progression. We developed a restricted model that predicted GA with high accuracy using three metabolites (rho = 0.87, RMSE = 1.58 weeks) that was validated in an independent cohort (n = 20). The predictions were more robust in pregnancies that went to term in comparison to pregnancies that ended prematurely. Overall, we demonstrated the feasibility of implementing urine metabolomics analysis in large-scale multi-site studies and report a predictive model of GA with a potential clinical value.
© 2022. The Author(s).
Conflict of interest statement
M.P.S. is a cofounder and on the advisory board of Personalis, SensOmics, January, Filtricine, Qbio, Protos and Mirive. M.P.S. is on the advisory board of Genapsys and Tailai. The other authors declare no competing interests.
Figures




References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources