Piggybacking on big data
- PMID: 35578133
- PMCID: PMC9179090
- DOI: 10.1038/s41593-022-01058-w
Piggybacking on big data
Abstract
The new ‘meta-matching’ algorithm developed by He et al in this issue of Nature Neuroscience enables small MRI datasets to piggyback on larger datasets to boost prediction accuracy. This innovation may aid efforts towards personalized psychiatry.
Figures
Comment on
-
Meta-matching as a simple framework to translate phenotypic predictive models from big to small data.Nat Neurosci. 2022 Jun;25(6):795-804. doi: 10.1038/s41593-022-01059-9. Epub 2022 May 16. Nat Neurosci. 2022. PMID: 35578132 Free PMC article.
References
-
- Marek S et al. Towards Reproducible Brain-Wide Association Studies. Biorxiv 2020.08.21.257758 (2020) doi:10.1101/2020.08.21.257758. - DOI
-
- He T et al. Meta-matching as a simple framework to translate phenotypic predictive models from big to small data. Nat. Neurosci https://dx.doi.org/xxx (2022). - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
