Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 26;13(20):4556-4562.
doi: 10.1021/acs.jpclett.2c00821. Epub 2022 May 17.

A Relation between the Formation of a Hydrogen-Bond Network and a Time-Scale Separation of Translation and Rotation in Molecular Liquids

Affiliations

A Relation between the Formation of a Hydrogen-Bond Network and a Time-Scale Separation of Translation and Rotation in Molecular Liquids

Manuel Becher et al. J Phys Chem Lett. .

Abstract

We study the relation between the translational and rotational motions of liquids, which is anticipated in the framework of the Stokes-Einstein-Debye (SED) treatment. For this purpose, we exploit the fact that 1H field-cycling nuclear magnetic resonance relaxometry and molecular dynamics simulations provide access to both modes of motion. The experimental and computational findings are fully consistent and show that the time-scale separation between translation and rotation increases from the van der Waals liquid o-terphenyl over ethylene glycol to the hydrogen-bonded liquid glycerol, indicating an increasing degree of breakdown of the SED relation. Furthermore, the simulation results for two ethylene glycol models with different molecular conformations indicate that the translation is more retarded than the rotation when the density of intermolecular hydrogen bonds increases. We conclude that an increasing connectivity of a hydrogen-bond network leads to an increasing time-scale separation and, thus, to a stronger SED violation.

PubMed Disclaimer

LinkOut - more resources