How Whole Slide Imaging and Machine Learning Can Partner with Renal Pathology
- PMID: 35582192
- PMCID: PMC9034807
- DOI: 10.34067/KID.0007982021
How Whole Slide Imaging and Machine Learning Can Partner with Renal Pathology
Keywords: basic science; digital image analysis; glomerular and tubulointerstitial diseases; machine learning; membranous nephropathy; minimal change disease; renal pathology; thin basement membrane disease; whole slide imaging.
Conflict of interest statement
All authors have nothing to disclose.
Figures
Comment on
-
Explainable Biomarkers for Automated Glomerular and Patient-Level Disease Classification.Kidney360. 2021 Dec 9;3(3):534-545. doi: 10.34067/KID.0005102021. eCollection 2022 Mar 31. Kidney360. 2021. PMID: 35582169 Free PMC article.
References
-
- Lujan G, Quigley JC, Hartman D, Parwani A, Roehmholdt B, Meter BV, Ardon O, Hanna MG, Kelly D, Sowards C, Montalto M, Bui M, Zarella MD, LaRosa V, Slootweg G, Retamero JA, Lloyd MC, Madory J, Bowman D: Dissecting the business case for adoption and implementation of digital pathology: A white paper from the Digital Pathology Association. J Pathol Inform 12: 17, 2021. 10.4103/jpi.jpi_67_20 - DOI - PMC - PubMed
-
- Evans AJ, Brown RW, Bui MM, Chlipala EA, Lacchetti C, Milner DA Jr, Pantanowitz L, Parwani AV, Reid K, Riben MW, Reuter VE, Stephens L, Stewart RL, Thomas NE: Validating whole slide imaging systems for diagnostic purposes in pathology: Guideline update from the College of American Pathologists in collaboration with the American Society for Clinical Pathology and the Association for Pathology Informatics [published online ahead of print May 18, 2021]. Arch Pathol Lab Med 10.5858/arpa.2020-0723-CP - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
